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In this Appendix, we provide further details about bench-
mark datasets, computational resources, training details,
evaluation metrics and additional experimental analysis.

1. Benchmark Datasets
CIFAR10C and CIFAR100C datasets are corrupted ver-

sions of the standard CIFAR10 and CIFAR100 [7] datasets,
respectively. ImageNetC [5] and ImageNet3DCC [6] are
both corrupted versions of the standard ImageNet [4]
dataset.

Both CIFAR10C and CIFAR100C datasets contain
10,000 images per corruption type, making 150,000 images
in total for each dataset. For ImageNetC dataset, there are
50,000 images for each corruption type. CIFAR10C, CI-
FAR100C, and ImageNet-C datasets consists of 15 diverse
corruption types with 4 extra corruption types for valida-
tion. Every corruption has five different levels of severity.
The various corruptions, along with a brief description, are
as follows: i. Gaussian noise: often occurs in low light;
ii. Shot noise: electronic noise due to discrete nature of
light; iii. Impulse noise: color equivalent of salt-and-pepper
noise, and it may be due to bit errors; iv. Defocus blur:
caused when a photograph is taken out of focus; v. Frosted
Glass Blur: due to an image through a frosted glass win-
dow; vi. Motion blur: occurs when a camera is rapidly
moving; vii. Zoom blur: happens when a camera quickly
approaches an object; viii. Snow: visually an obscuring
kind of precipitation; ix. Frost arises when ice crystals ad-
here to windows; x. Fog: Objects are cloaked in fog, which
is rendered using the diamond-square algorithm; xi. Bright-
ness: varying brightness with the sunshine intensity; xii.
Contrast: depends on the lighting conditions and color of
the photographed item; xiii. Elastic transformations: Small
image areas are stretched or contracted via elastic transfor-
mations; xiv. Pixelation: happens when a low-resolution
picture is upsampled; xv. JPEG: lossy image compression
that results in compression artifacts.

Recently proposed by [6], the ImageNet 3D Common
Corruptions (ImageNet3DCC) dataset exploits the geome-
try of the scene in transformations, resulting in more real-
istic corruptions. The Imagenet3DCC dataset has 50,000

images for each corruption type. It consists of 12 different
types of corruption, each with 5 severity levels. The cor-
ruptions are as follows: i. Near focus: changing the focus
area to the near portion of the scene at random; ii. Far fo-
cus: randomly change the focus to the scene’s far part; iii.
Bit error: caused by an imperfect video transmission chan-
nel; iv. Color quantization: decreases the RGB image’s
bit depth; v. Flash: caused by positioning a light source
near the camera; vi. Fog 3D: generated by using a stan-
dard optical model for fog; vii. H.265 ABR: codec H.265
for compression with Average Bit Rate control mode; viii.
H.265 CRF: codec H.265 for compression with Constant
Rate Factor (CRF) control mode; ix. ISO noise: noise us-
ing a Poisson-Gaussian distribution; x. Low light: simulate
low-light imaging setting by lowering the pixel intensities
and adding Poisson-Gaussian distributed noise; xi. XY-
motion blur: the main camera is moving along the image
XY-plane; xii. Z-motion blur: the main camera is moving
along the image Z-axis.

These datasets are developed to serve as benchmarks for
measuring robustness of classification models.

2. Computational Resource Details
All the experiments were run locally on a GPU server

with Nvidia Titan RTX GPUs with 24 GB memory, In-
tel(R) Xeon(R) Silver 4110 CPU with 128 GB RAM, and
Ubuntu 18.04.6 LTS OS. PETAL is implemented using Py-
Torch version 1.10.0. More details about the other relevant
libraries are provided in the source code.

For CIFAR-10 experiments, further training the pre-
trained WideResNet-28 model from RobustBench bench-
mark [3] using the source domain training data takes ap-
proximately 20 minutes. For CIFAR-100 experiments, we
further train the pre-trained ResNeXt-29 [10] model from
RobustBench benchmark [3] using the source domain train-
ing data for approximately 15 minutes. For ImageNet ex-
periments, training the pre-trained ResNet50 model from
RobustBench benchmark [3] further using the source do-
main training data takes approximately 5 hours.

For the CIFAR10-to-CIFAR10C adaptation experiment
on the highest severity level of 5 using our approach
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Figure 1. CIFAR10-to-CIFAR10C Results for the corruption order as depicted in the figure with the corruption of severity level 5. The
error rate is averaged over 5 runs. The standard deviation is depicted in the bar plot. PETAL (FIM) performs better in most of the settings.
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Figure 2. CIFAR100-to-CIFAR100C Results for the corruption order as depicted in the figure with the corruption of severity level 5. The
error rate is averaged over 5 runs. The standard deviation is depicted in the bar plot. PETAL (FIM) performs better in most of the settings.

PETAL, the total time taken for adapting the pre-trained
WideResNet-28 model on 15 corruption types takes approx-
imately 3 hours. In CIFAR10-to-CIFAR10C gradual ex-
periment, since the severity level changes gradually before
the change in corruption type, the total number of different
corruption-severity level pairs is 131. Further, the experi-
ment is conducted for 10 random orders of corruption se-

quences and so the total time taken is about 6 days and 19
hours.

CIFAR100-to-CIFAR100C adaptation experiment using
pre-trained ResNeXt-29 for the highest severity level of 5
takes approximately 1 hour and 10 minutes.

For ImageNet-to-ImageNetC adaptation experiment on
the highest severity level of 5, the total time taken for



adapting the pre-trained ResNet50 model on 15 corrup-
tion types repeated for 10 diverse corruption sequences is
about 2 hours and 30 minutes in total. The ImageNet-
to-ImageNet3DCC adaptation experiment on the highest
severity level of 5 for 12 corruptions took a total time of
about 2 hours and 15 minutes.

3. Training Details

3.1. Training on Source Domain data

To obtain the approximate posterior using the source do-
main training data, we use SWAG-D [8] posterior. This
requires further training of the pre-trained models on the
source domain training data for a few more epochs.

For CIFAR-10 experiments, the pre-trained
WideResNet-28 model from RobustBench benchmark [3]
is used, which is already trained using CIFAR-10 training
data. We further train it using SGD with momentum for 5
epochs with a learning rate of 8e-4, collecting iterates for
SWAG-D [8] once in each epoch. Similarly, for CIFAR-
100 experiments, we use the pre-trained ResNeXt-29 [10]
model from RobustBench benchmark [3] by training it
further using SGD with momentum for 5 more epochs
with a learning rate of 8e-4. For ImageNet experiments,
we further train the pre-trained standard ResNet50 model
from RobustBench benchmark [3] for 2 more epochs and
collect 4 iterates per epoch with a learning rate of 1e-4 for
obtaining SWAG-D approximate posterior.

3.2. Adaptation on Target Domain Test data

For the online lifelong test-time adaptation (TTA), we
use the same hyperparameters mentioned in CoTTA [9] us-
ing a learning rate of 0.001 with Adam optimizer. Based
on [2] and [9], we apply random augmentations that
include color jitter, random affine, Gaussian blur, ran-
dom horizontal flip, and Gaussian noise. For stochas-
tic restore probability, we use the same value used by
CoTTA, i.e., 0.01 for CIFAR10-to-CIFAR10C/CIFAR100-
to-CIFAR100C and 0.001 for ImageNet-to-ImageNetC ex-
periments. We tune the FIM based parameter restoration
quantile value δ using the extra four validation corrup-
tions and use 0.03 for CIFAR10-to-CIFAR10C/CIFAR100-
to-CIFAR100C, and use 0.003 for ImageNet-to-ImageNetC
and ImageNet-to-ImageNet3DCC.

To adapt the model, we optimize the following training
objective from Equation 7:

max
θ

log q(θ)− λ̄

M

M∑
m=1

Hxe(y′, y|x̄) (11)

Here, q(θ) is the approximate posterior density obtained us-
ing SWAG-D [8]. λ̄ is a hyperparameter that determines

the importance of the cross-entropy minimization term rel-
ative to the posterior term. For the implementation, putting
α = 1/λ̄, we rewrite the training objective as follows:

max
θ

α log q(θ)− 1

M

M∑
m=1

Hxe(y′, y|x̄) (12)

For all the experiments, we tune the α hyperparameter us-
ing the corresponding extra four validation corruptions and
use one of the values from {1e-6, 1e-7, 1e-9, 1e-10, 5e-
10, 1e-11, 5e-11, 1e-12} for which the average error is the
lowest. We follow CoTTA [9] for setting the hyperparame-
ters: augmentation threshold for confident predictions τ and
exponential moving average smoothing factor π = 0.999.
CoTTA [9] discusses choice of τ in detail in their supple-
mentary.

Gradually changing corruptions: In this setting, the
severity of corruption changes gradually before the change
in corruption type. For example, if As, Bs, and Cs are three
different corruptions of severity level s, then there are 23
corruption-severity pairs in total. They arrive as follows:

A5→A4→A3→A2→A1
change−−−−−−−→

corruption
B1→B2→B3→B4

→B5→B4→B3→B2→B1
change−−−−−−−→

corruption
C1→C2→C3→C4

→C5→C4→C3→C2→C1

When the corruption type changes, the severity level is
1, and thus, the domain shift is gradual. In addition, distri-
bution shifts within each corruption type are also gradual.

4. Evaluation Metrics

Let y′n be the predicted probability vector and yn be the
true label (yni = 1 if i is the true class label, else yni = 0)
for input xn. Let the number of examples be N and the
number of classes be D.

4.1. Error

The average error rate is defined as:

Error =
1

N

N∑
n=1

I(y′n ̸= yn)

where I() is the indicator function.

4.2. Brier Score

The average Brier score [1] is defined as:

Brier score =
1

N

N∑
n=1

D∑
i=1

(y′ni − yni)
2
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Figure 3. ImageNet-to-ImageNetC results averaged over 10 different corruption sequences with corruption of severity level 5. PETAL
(FIM) outperforms other approaches for most of the corruptions.

4.3. Negative Log-Likelihood

The average negative log-likelihood (NLL) is defined as:

NLL = − 1

N

N∑
n=1

D∑
i=1

(yni log y
′
ni)

5. Additional Experimental Results
5.1. CIFAR10-to-CIFAR10C Results

Figure 1 shows the results of CIFAR10-to-CIFAR10C
experiments in which the corruption types arrive in the de-
picted order. The standard deviations are depicted in the fig-
ure. PETAL performs better in most of the settings. More-

over, PETAL (FIM) performs better than PETAL (SRES)
demonstrating the effectiveness of data-driven FIM based
parameter resetting.

5.2. CIFAR100-to-CIFAR100C Results

The CIFAR100-to-CIFAR100C adaptation results are
shown in Figure 2 in which the corruption types arrive in
the depicted order. The standard deviations are depicted in
the figure. We observe that PETAL outperforms most of the
approaches.
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Figure 4. ImageNet-to-ImageNet3DCC results averaged over 10 different corruption sequences with corruption of severity level 5. PETAL
(FIM) outperforms other approaches for most of the corruptions.

5.3. ImageNet-to-ImageNetC Results

For ImageNet-to-ImageNetC experiments, we provide
the error rate, Brier score, and NLL in Figure 3. The exper-
iments are conducted for 10 diverse corruption sequences.
The numbers in Figure 3 are obtained by averaging over
the 10 different orders of corruption sequences. PETAL
(FIM) outperforms CoTTA and PETAL (SRES) for most of
the corruptions in terms of average error rate, average Brier
score, and average NLL.

5.4. ImageNet-to-ImageNet3DCC Results

We report the results for ImageNet-to-ImageNet3DCC
experiments in Fig. 4. The numbers are averaged over
10 random corruption orders. Our approach PETAL per-
forms better than other approaches for most of the corrup-
tion types.

Results demonstrate that our probabilistic approach, in

which the source model’s posterior leads to a regularizer
and the data-driven reset helps make an informed choice of
weights to reset/keep, significantly outperforms a number of
baselines, including CoTTA, which is specifically designed
for continual test time adaptation.

5.5. Experiments with Similar Resetting Rate

We compare the performance of PETAL (FIM) and
PETAL (SRes) with a similar resetting rate of 0.03. For
CIFAR10-to-CIFAR10C, the average error rate over 5 runs
for PETAL (SRes) with 0.03 restoring rate is 16.51±0.02,
whereas that of PETAL (FIM) is 15.95±0.04. This indi-
cates that FIM enables more parameters to be restored than
stochastic restore (SRes).



5.6. Effectiveness of Various Components

In Table 1 and Table 2, the better performance of PETAL
(FIM) than PETAL (S-Res) highlights the contribution of
FIM for improved performance over the stochastic re-
store. For CIFAR10-to-CIFAR10C, the average error rate
for PETAL with no parameter restore over 5 runs is
16.37±0.03, which is worse than having a parameter re-
store. In addition, the contribution of the regularizer term
(caused by the source model’s posterior) is clear from the
better performance of PETAL over CoTTA [9], given that
CoTTA is a special case of PETAL with no regularizer term.

5.7. Limitation and Future Scope

A limitation of our proposed approach is that we use an
approximate posterior obtained using SWAG-diagonal, and
we can experiment with better approximations for the pos-
terior in future work. Further, we can explore the problem
setting of lifelong TTA where we have a small number of
examples per batch.
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