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Figure 1. We show the distribution of object centers in normalized image coordinates projected onto the XY-plane (top) and normalized
depth projected onto the topview XZ-plane (bottom) across each subset of OMNI3D, individual 3D datasets SUN RGB-D [17], ARKit [2],
Hypersim [15], Objectron [1], KITTI [6], nuScenes [4], and large-scale 2D datasets COCO [11] and LVIS [7].

1. Dataset Details

In this section, we provide details related to the creation
of OMNI3D, its sources, coordinate systems, and statistics.

Sources. For each individual dataset used in OMNI3D, we
use their official train, val, and test set for any datasets which
have all annotations released. If no public test set is available
then we use their validation set as our test set. Whenever
necessary we further split the remaining training set in 10:1
ratio by sequences in order form train and val sets. The
resultant image make up of OMNI3D is detailed in Table 1.
To make the benchmark coherent we merged semantic cate-
gories across the sources, e.g., there are 26 variants of chair
including ‘chair’, ‘chairs’, ‘recliner’, ‘rocking chair’, etc.
We show the category instance counts in Figure 2.

Coordinate system. We define our unified 3D coordinate
system for all labels with the camera center being the origin
and +x facing right, +y facing down, +z inward [6]. Ob-
ject pose is relative to an initial object with its bottom-face
normal aligned to +y and its front-face aligned to +x (e.g.
upright and facing to the right). All images have known
camera calibration matrices with input resolutions varying
from 370 to 1920 and diverse focal lengths from 518 to
1708 in pixels. Each object label contains a category label, a
2D bounding box, a 3D centroid in camera space meters, a
3× 3 matrix defining the object to camera rotation, and the
physical dimensions (width, height, length) in meters.

Method |C| |C∗| Total Train Val Test
KITTI [6] 8 5 7,481 3,321 391 3,769
SUN RGB-D [17] 83 38 10,335 4,929 356 5,050
nuScenes [4] 9 9 34,149 26,215 1,915 6,019
Objectron [1] 9 9 46,644 33,519 3,811 9,314
ARKitScenes [2] 15 14 60,924 48,046 5,268 7,610
Hypersim [15] 32 29 74,619 59,543 7,386 7,690
OMNI3DOUT 14 11 41,630 29,536 2,306 9,788
OMNI3DIN 84 38 145,878 112,518 13,010 20,350
OMNI3D 98 50 234,152 175,573 19,127 39,452

Table 1. We detail the statistics for each dataset split. We report the
total number of categories |C|, and the number of categories |C∗|
used in our paper and our AP3D metrics. C∗ contains all categories
from C with at least 1000 positive instances. Finally, we report the
total number of images split into train/val/test.

Spatial Statistics. Following Section 3 of the main paper, we
provide the spatial statistics for the individual data sources
of SUN RGB-D [17], ARKit [2], Hypersim [15], Objec-
tron [1], KITTI [6], nuScenes [4], as well as OMNI3DIN and
OMNI3DOUT in Figure 1. As we mention in the main paper,
we observe that the indoor domain data, with the exception
of Hypersim, have bias for close objects. Moreover, outdoor
data tend to be spatially biased with projected centroids along
diagonal ground planes while indoor is more central. We
provide a more detailed view of density-normalized depth
distributions for each dataset in Figure 3.



Figure 2. Number of instances for the 50 categories in OMNI3D.

Figure 3. Normalized depth distribution per dataset in OMNI3D. We slightly limit the depth and density ranges for a better visualization.

2. Model Details
In this section, we provide more details for Cube R-CNN

pertaining to its 3D bounding box allocentric rotation (Sec.
4.1) and the derivation of virtual depth (Sec. 4.2).

2.1. 3D Box Rotation

Our 3D bounding box object rotation is predicted in the
form of a 6D continuous parameter, which is shown in [20]
to be better suited for neural networks to regress compared to
other forms of rotation. Let our predicted rotation p be split
into two directional vectors p1,p2 ∈ R3 and r1, r2, r3 ∈
R3 be the columns of a 3× 3 rotational matrix Ra. Then p
is mapped to Ra via

r1 = norm(p1) (1)
r2 = norm(p2 − (r1 · p2)r1) (2)
r3 = r1 × r2 (3)

where (·,×) denote dot and cross product respectively.

Ra is estimated in allocentric form similar to [10].
Let fx, fy, px, py be the known camera intrinsics, u, v
the predicted 2D projected center as in Section 4.1, and
a = [0, 0, 1] be the camera’s principal axis. Then o =
norm([u−px

fx
,

v−py

fy
, 1]) is a ray pointing from the camera to

u, v with angle α = acos(o). Using standard practices of
axis angle representations with an axis denoted as o× a and
angle α, we compute a matrix M ∈ R3×3, which helps form
the final egocentric rotation matrix R = M ·Ra.

We provide examples of 3D bounding boxes at constant
egocentric or allocentric rotations in Figure 4. The allo-
centric rotation is more aligned to the visual 2D evidence,
whereas egocentric rotation entangles relative position into
the prediction. In other words, identical egocentric rotations
may look very different when viewed from varying spatial
locations, which is not true for allocentric.
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Figure 4. We show egocentric and allocentric representations under constant rotations. Despite being identical rotations, the egocentric
representation appears visually different as its spatial location changes, unlike allocentric which is consistent with location changes.

2.2. Virtual Depth

In Section 4.2, we propose a virtual depth transformation
in order to help Cube R-CNN handle varying input image res-
olutions and camera intrinsics. In our experiments, we show
that virtual depth also helps other competing approaches,
proving its effectiveness as a general purpose feature. The
motivation of estimating a virtual depth instead of metric
depth is to keep the effective image size and focal length
consistent in an invariant camera space. Doing so enables
two camera systems with nearly the same visual evidence of
an object to transform into the same virtual depth as shown
in Figure 4 of the main paper. Next we provide the proof for
the conversion between virtual and metric depth.

Proof: Assume a 3D point (X,Y, Z) projected to
(x, y) on an image with height H and focal length f .
The virtual 3D point (X,Y, Zv) is projected to (xv, yv) on
the virtual image. The 2D points (x, y) and (xv, yv) corre-
spond to the same pixel location in both the original and
virtual image. In other words, yv = y · Hv

H . Recall the for-
mula for projection as y = f · YZ +py and yv = fv · Y

Zv
+pyv ,

where py is the principal point and pyv
= py · Hv

H . By sub-
stitution fv · Y

Zv
= f · Y

Z
Hv

H ⇒ Zv = Z · fv
f

H
Hv

.

2.3. Training Details and Efficiency

When training on subsets smaller than OMNI3D, we ad-
just the learning rate, batch size, and number of iterations
linearly until we can train for 128 epochs between 96k to
116k iterations. Cube R-CNN trains on V100 GPUs between
14 and 26 hours depending on the subset configuration when
scaled to multi-node distributed training, and while training
uses approximately 1.6 GB memory per image. Inference
on a Cube R-CNN model processes image from KITTI [6]
with a wide input resolution of 512×1696 at 52ms/image
on average while taking up 1.3 GB memory on a Quadro
GP100 GPU. Computed with an identical environment, our
model efficiency is favorable to M3D-RPN [3] and GUP-
Net [13] which infer from KITTI images at 191ms and 66ms
on average, respectively.

3. Evaluation
In this section we give additional context and justification

for our chosen thresholds τ which define the ranges of 3D
IoU that AP3D is averaged over. We further provide details
on our implementation of 3D IoU.

3.1. Thresholds τ for AP3D

We highlight the relationship between 2D and 3D IoU in
Figure 5. We do so by contriving a general example between
a ground truth and a predicted box, both of which share
rotation and rectangular cuboid dimensions (0.5×0.5×1.0).
We then translate the 3D box along the z-axis up to 1 meter
(its unit length), simulating small to large errors in depth
estimation. As shown in the left of Figure 5, the 3D IoU
drops off significantly quicker than 2D IoU does between
the projected 2D bounding boxes. As visualized in right of
Figure 5, a moderate score of 0.63 IoU2D may result in a low
0.01 IoU3D. Despite visually appearing to be well localized
in the front view, the top view helps reveal the error. Since
depth is a key error mode for 3D, we find the relaxed settings
of τ compared to 2D (Sec. 5) to be reasonable.

3.2. IoU3D Details

We implement a fast IoU3D. We provide more details for
our algorithm here. Our algorithm starts from the simple
observation that the intersection of two oriented 3D boxes,
b1 and b2, is a convex polyhedron with n > 2 comprised
of connected planar units. In 3D, these planar units are 3D
triangular faces. Critically, each planar unit belongs strictly
to either b1 or b2. Our algorithm finds these units by iterating
through the sides of each box, as described in Algorithm 1.

4. nuScenes Performance
In the main paper, we compare Cube R-CNN to com-

peting methods with the popular IoU-based AP3D metric,
which is commonly used and suitable for general purpose
3D object detection. Here, we additionally compare our
Cube R-CNN to best performing methods with the nuScenes
evaluation metric, which is designed for the urban domain.
The released nuScenes dataset has 6 cameras in total and
reports custom designed metrics of mAP and NDS as de-



(a) IoUs vs Example Z Errors (b) IoUs at Critical Points
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Figure 5. We slowly translate a 3D box (purple) backwards relative to its ground-truth (green), hence simulating error in z up to 1 unit length
(l̄gt

3D = 1). We plot 2D and 3D IoU vs z error in (a) and visualize selected critical points showing their 2D projections, 3D front view and a
novel top view. Unsurprisingly, we find the drop in IoU3D is much steeper than 2D. This effect highlights both the challenge of 3D object
detection and helps justify the relaxed τ thresholds used for AP3D in Section 5 of the main paper.

Algorithm 1: A high-level overview of our fast and

exact IoU3D algorithm.
Data: Two 3D boxes b1 and b2

Result: Intersecting shape S = []

Step 1: For each 3D triangular face e ∈ b1 we check

wether e falls inside b2

Step 2: If e is not inside, then we discard it

Step 3: If e is inside, then S = S + [e]. If e is

partially inside, then the part of e inside b2, call it ê,

is added to S, S = S + [ê]

Step 4: We repeat steps 1 - 3 for b2
Step 5: We check and remove duplicates in S (in the

case of coplanar sides in b1 and b2)

Step 6: We compute the volume of S, which is

guaranteed to be convex

tailed in [4]. Predictions from the 6 input views (each from a
different camera) are fused to produce a single prediction. In
contrast, our benchmark uses 1 camera (front) and therefore
does not require or involve any post-processing fusion nor
any dataset-specific predictions (e.g velocity and attributes).
Moreover, as discussed in Section 5.1, the mAP score used
in nuScenes is based on distances of 3D object centers which
ignores errors in rotation and object dimensions. This is
suited for urban domains as cars tend to vary less in size
and orientation and is partially addressed in the NDS metric
where true-positive (TP) metrics are factored in as an average
over mAP and TP (Eq. 3 of [4]).

We compare with the current best performing methods on
nuScenes, FCOS3D [19] and PGD [18]. We take their best

nuScenes Front Camera Only
Method TTA mAP mATE mASE mAOE NDS AP3D

FCOS3D [19] ✓ 35.3 0.777 0.231 0.400 44.2 27.9
PGD [18] ✓ 39.0 0.675 0.236 0.399 47.6 32.3
Cube R-CNN ✗ 32.6 0.671 0.289 1.000 33.6 33.0

Table 2. We compare Cube R-CNN to competing methods,
FCOS3D and PGD, on the nuScenes metrics on the single front cam-
era setting, and without velocity or attribute computations factored
into the NDS metric. The nuScenes metric uses a center-distance
criteria at thresholds of {0.5, 1, 2, 4} meters, ignoring object size
and rotation, whereas our AP3D metric (last col.) uses IoU3D. Cube
R-CNN predicts relative orientation to maximize IoU3D rather than
absolute, and therefore receives a high mAOE. Note that FCOS3D
and PGD use test-time augmentations (TTA); we don’t.

models including fine-tuning and test-time augmentations
(TTA), then modify the nuScenes evaluation metric in the
following three ways:

1. We evaluate on the single front camera setting.

2. We merge the construction vehicle and truck categories,
as in the pre-processing of OMNI3D.

3. We drop the velocity and attribute true-positive metrics
from being included in the NDS metric. Following [4]
our TP = {mATE, mASE, mAOE} resulting in a metric
of NDS = 1

6 (3 mAP +
∑

mTP∈TP
1− min(1,mTP))

Table 2 reports the performance of each nuScenes metric
for Cube R-CNN, FCOS3D, and PGD along with our AP3D.
Since these methods are evaluated on the front cameras,
no late-fusion of the full camera array is performed and
side/back camera ground truths are not evaluated with. Cube
R-CNN performs competitively but slightly worse on the
mAP center-distance metric compared to FCOS3D and PGD.
This is not surprising as the FCOS3D and PGD models
were tuned for the nuScenes benchmark and metric and
additionally use test time augmentations, while we don’t.



Method Trained on table bed sofa bathtub sink shelves cabinet fridge chair television avg.
ImVoxelNet [16] SUN RGB-D 39.5 68.8 48.9 33.9 18.7 2.4 13.2 17.0 55.5 8.4 30.6
Cube R-CNN SUN RGB-D 39.2 65.7 58.1 49.0 32.5 4.3 16.2 25.2 54.5 2.7 34.7
Cube R-CNN OMNI3DIN 38.3 66.5 60.3 51.8 30.8 3.2 13.3 30.3 56.1 3.6 35.4

Table 3. Comparison to ImVoxelNet [16] on SUN RGB-D test. We use the full 3D object detection setting to report AP3D.

Method Trained on table bed sofa bathtub sink shelves cabinet fridge chair toilet avg.
Total3D [14] SUN RGB-D 27.7 33.6 30.1 28.5 18.8 10.1 13.1 19.1 24.2 28.1 23.3
Cube R-CNN SUN RGB-D 39.2 49.5 46.0 32.2 31.9 16.2 26.5 34.7 39.9 45.7 36.2
Cube R-CNN OMNI3DIN 40.7 50.1 50.0 33.8 31.8 18.2 29.0 34.6 41.6 48.2 37.8

Table 4. Comparison to Total3D [14] on SUN RGB-D test. We use oracle 2D detections fairly for all methods and report IoU3D.

5. Full Category Performance on OMNI3D
We train Cube R-CNN on the full 98 categories within

OMNI3D, in contrast to the main paper which uses the
50 most frequent categories with more than 1k positive in-
stances. As expected, the AP3D performance decreases when
evaluating on the full categories from 23.3 to 14.1, and simi-
larly for AP2D from 27.6 to 17.3. At the long-tails, we expect
2D and 3D object recognition will suffer since fewer positive
examples are available for learning. We expect techniques
related to few-shot recognition could be impactful and lend
to a new avenue for exploration with OMNI3D.

6. Per-category SUN RGB-D Performance
We show per-category performance on AP3D for Cube R-

CNN and ImVoxelNet [16]’s publicly released indoor model
in Table 3. We show the 10 common categories which in-
tersect all indoor datasets as used in Table 4-5 in the main
paper for fair comparisons when training categories differ.

Similarly, Table 4 shows detailed per-category IoU3D per-
formance for Cube R-CNN and Total3D [14] on 10 common
categories, a summary of which was presented in Table 4 in
the main paper. Note that television, in our 10 intersecting
categories, is not detected by Total3D thus we replace it by
toilet which is the next most common category.

7. Regarding the Public Models Used for
OMNI3D Comparisons

We use publicly released code for M3D-RPN [3], GUP-
Net [13], SMOKE [12], FCOS3D [19], PGD [18], and
ImVoxelNet [16] and Total3D [14] in Section 5. Most of
these models are implemented in the mmdetection3d [5]
open-source repository, which critically supports many fea-
tures for dataset scaling such as distributed scaling and strate-
gic data sampling.

Most of the above methods tailor their configuration
hyper-parameters in a handful of ways specifically for each
dataset they were originally designed for. Since our experi-
ments explicitly run on mixed datasets which have diverse
resolutions, aspect ratios, depth distributions, etc., we opted
to run each method on a variety of settings. We did our best

to run each method on multiple sensible hyper-parameters
settings to give each method the most fair chance. We fo-
cused primarily on the settings which are impacted by input
resolution and depth distributions, as these are seemingly
the biggest distinctions between datasets. When applicable,
we implemented virtual depth with a custom design for each
method depending on its code structure (see main paper).

Although we expect that better recipes can be found for
each method, we ran more than 100 experiments and are
using 17 of these runs selected based on best performance
to report in the paper.

8. Qualitative Examples

Figure 6 shows more Cube R-CNN predictions on
OMNI3D test. In Figure 7, we demonstrate generalization
for interesting scenes in the wild from COCO [11] images.
When projecting on images with unknown camera intrin-
sics, as is the case for COCO, we visualize with intrinsics
of f = 2 ·H, px = 1

2W, py = 1
2H , where H ×W is the

input image resolution. As shown in Figure 7, this appears
to result in fairly stable generalization for indoor and more
common failure cases concerning unseen object or camera
poses in outdoor. We note that simple assumptions of in-
trinsics prevent our 3D localization predictions from being
real-world up to a scaling factor. This could be resolved
using either real intrinsics or partially handled via image-
based self-calibration [8, 9, 21] which is itself a challenging
problem in computer vision.

Lastly, we provide a demo video1 which further demon-
strates Cube R-CNN’s generalization when trained on
OMNI3D and then applied to in the wild video scenes from
a headset mounted camera, similar to AR/VR heasets. In the
video, we apply a simple tracking algorithm which merges
predictions in 3D space using 3D IoU and category cosine
similarity when comparing boxes. We show the image-based
boxes on the left and a static view of the room on the right.
We emphasize that this video demonstrates zero-shot per-
formance since no fine-tuning was done on the domain data.

1https://omni3d.garrickbrazil.com/#demo

https://omni3d.garrickbrazil.com/#demo


Figure 6. Cube R-CNN on OMNI3D test. We show the input image, the 3D predictions overlaid on the image and a top view. We show
examples from SUN RGB-D [17], ARKitScenes [2], Hypersim [15], Objectron [1], nuScenes [4], and KITTI [6].
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