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1. Static R-I Curves
In section 4.2, we introduce our Rate Gradient Approxi-

mation Attack. The key idea of this attack is to approximate
the SNN backward pass of SNNs using only the average
firing rate over time-steps to generate more effective gradi-
ents. However, the gradient ∂ri

∂Ii
can not be directly calcu-

lated, so we need to determine the surrogate functions for
approximation.

The definition of the static R-I curve is the function that
maps the constant input current to the output average firing
rate. We used this static R-I curve to estimate the relation-
ship between actual firing rates and neuronal inputs. To cal-
culate the static R-I curve, we consider the time it takes for
a single neuron to fire a spike from its resting state. During
this process, the behavior of the neuron can be described as

ui(t) = λui(t− 1) + Ii. (S1)

Static R-I curve for IF neurons
For IF neurons, we have λ = 1, thus we rewrite this

equation as

ui(t) = ui(t− 1) + Ii. (S2)

This is an arithmetic sequence. Supposing that the firing
threshold is θ, we can directly calculate the static R-I curve
as

ri =
Ii
θ
. (S3)

Static R-I curve for LIF neurons
For LIF neurons, we have λ < 1. The membrane poten-

tial {ui(t)}t=0,1,... can be viewed as a sequence. And we
can then transform this formula to

ui(t) +
Ii

λ− 1
= λ(ui(t− 1) +

Ii
λ− 1

). (S4)

This is a geometric sequence. Thus, we can finally cal-
culate the function of ui(t).

ui(t) =
Ii

λ− 1
λt − Ii

λ− 1
. (S5)

The spike firing time is the time for membrane potential
ui(t) to accumulate from resting value to the threshold θ,
which should be

t(f) =

⌈
logλ

Ii + θ(λ− 1)

Ii

⌉
. (S6)

Then the firing rate is the multiplicative inverse of the spike
firing time

ri =
1

t(f)
=

⌈
logλ

Ii + θ(λ− 1)

Ii

⌉−1

. (S7)

So far, we have obtained the static R-I curves for IF and
LIF neurons.

2. Actual R-I Curves

In section 4.3, we also draw the actual R-I curve from
experimental data, shown by the light blue scatter in Fig.4
and Fig. 5 of the main text. Here we introduce how to get
the actual R-I curve in detail.

The actual R-I curve is the relationship between the ac-
tual average firing rate and the actual average input current.
Therefore, we can obtain the input and output firing rate
on the validation set, and then draw a scatter plot to rep-
resent the actual relationship between R-I. In this experi-
ment, we use the VGG-11 architecture with the CIFAR-10
dataset. We choose the neurons in the second layer and ran-
dom sample 8000 data points. We average the inputs and
outputs over time for each neuron to get the average inputs
and outputs. We then scatter these 8000 data pairs as the
actual R-I curves. From this, we can better adjust the surro-
gate function to fit in practicality.

3. Hyperparameter Studies

We add two parameters to the surrogate function for Rate
Gradient Attack. The final surrogate gradient can be used
to approximate the gradient of ∂ri

∂Ii
for LIF neurons with

arbitrary leaky parameters λ. The general expression for
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Figure S1. Effect of hyperparameters

this function can be written as

∂ri
∂Ii

=


γ, 0 ⩽ Ii ⩽ (1− λ)θ

1− γθ + γθλ

(β + λ− 1)θ
, (1− λ)θ < Ii ⩽ βθ

0, Ii > βθ or Ii < 0

. (S8)

We then conduct further experiments to determine both hy-
perparameters with VGG-16 structure on the CIFAR-10
dataset. We change the value of hyperparameters and test
the attack success rate of the RGA-based attack. The re-
sults are in Fig. S1a and Fig. S1b.
Effect of parameter β

To test the effectiveness of β on different neurons, we
use the LIF neuron with inference time T = 8 and leaky
parameters λ = 1.0, 0.5. Candidate beta values include 1,
2, 3, and 4. From Fig. S1a, we can see that the best value for
β is around 2. Thus, we choose β = 2 for all RGA-based
attacks.
Effect of parameter γ

Following the experiment above, we make similar ex-
periments to test the effectiveness of the smooth parameter
γ. We choose LIF neurons with inference time T = 8 and
leaky parameters λ = 0.9, 0.5. Since γ only works on leaky
neurons, we do not test the case that λ = 1. We compare
the attack success rate with different γ (γ = 0, 0.1, 0.2, 0.3)
and show the results in Fig. S1b. When γ = 0.2, the RGA-
based attack performs the most significant results. Thus, γ
is set to 0.2 for all RGA-based attacks.

4. Network Training Configuration
As for preprocessing, we first normalize images to [0,

1] and then random crop and horizontalflip the images.
We also add Cutout [1] as extra data augmentation. As
for neuron configurations, the resting potential is set to 0,
and the threshold is set by default 1. Besides, we use the
triangle-shaped surrogate gradient [2] when doing both su-
pervised STBP training and STBP-based attacks. We use
the Stochastic Gradient Descent with momentum to opti-
mizer all networks and use cosine annealing [3] for warm-
ing up. The loss function is the cross entropy loss for both

CIFAR datasets and CIFAR10-DVS dataset. Other hyper-
parameters in training can be checked from Tab. S1.

Initial
learning rate

Momentum
Weight
decay

Batchsize Epochs

0.1 0.9 5e-4 64 200

Table S1. Training Configuration

5. Cost Analysis
In this section, we discuss the time and memory cost of

the RGA attack. Here we evaluate the computational time
of adversarial attacks. We fix the mini-batch size as 32
and perform an adversarial attack on the validation set of
CIFAR-10. We use NVIDIA 3090 GPU and CentOS Linux
platform. We compare the time and memory cost for RGA
and STBP attacks and present the results in Tab. S2. We
find that the RGA attack requires less memory and compu-
tational cost than STBP. This also makes this attack method
more potential in adversarial training.

Attack Method RGA STBP
Time Cost (s) 6.273 10.683

Memory Cost (Mb) 3299 4053

Table S2. Effectiveness of the RGA Attack
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