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A. Inter annotator agreement. Symmetric noise and symmetric ground truth distribution

Cohen’s  coefficient measures the agreement between two raters who each classify n items into C mutually exclusive
categories.

We define the agreement among raters a and b as po: po =
P

C

c=1 P(ya = c \ yb = c) Cohen and others [1] suggest
comparing the actual agreement (po) with the “chance agreement” that could be obtained if the labels assigned by the two
annotators were independent (we will denote this quantity by pe).

pe =
CX

c=1

P(ya = c)P(yb = c) (23)

The Cohen’s  coefficient is defined as the difference between the true agreement and the “chance agreement” normalized by
the maximum value this difference can reach

 :=
po � pe

1� pe
, (24)

If the raters are in complete agreement then  = 1. If there is no agreement among the raters other than what would be
expected by chance (i.e. po = pe)  = 0. It can also take negatives values. A negative  indicates agreement worse than
that expected by chance. This can be interpreted as not agreement at all between annotators. In our work we assume that the
two raters are a corrupted version of a observable “clean” (ground truth) label. In this setting the label assigned by annotator
a to an item and the respective uncorrupted label are not independent random variables. We found that in this setting the 

coefficient can takes only non-negative values.

B. On the hypothesis of commutativity in Lemma 4.1

In Lemma 4.1 we found how to compute T given M and D. To find this relationship we require that D 1
2 commutes with

T . This hypothesis is satisfied when D and T have a particular structure, namely
p
dip
dj

tij = tij 8i and j.

That is satisfied or if di = dj or if tij = 0, namely every class so that the probability of going from class i to class j (and
vice-versa) is not zero is equiprobable.

So T has to be block diagonal, or better reducible by a permutation of the classes to a block diagonal matrix and D has to
have all equal elements on indices relatives to the same block in T . For instance

T =

0

BBBBB@

T1 0 0 0 0
0 T2 0 0 0
0 0 T3 0 0

0 0 0
. . . 0

0 0 0 0 Tj

1

CCCCCA
and D =

0

BBBBB@

D1 0 0 0 0
0 D2 0 0 0
0 0 D3 0 0

0 0 0
. . . 0

0 0 0 0 Dj

1

CCCCCA

with

Di =

0

B@
di 0 0

0
. . . 0

0 0 di

1

CA

T need not be block diagonal but must be reconducted to a block diagonal matrix by permuting the classes, for instance
in the following case, we can obtain a matrix block diagonal by permuting classes 2 and 4

T =

0

BB@

t11 0 0 t14

0 t22 t23 0
0 t23 t33 0
t14 0 0 t44

1

CCA and D =

0

BB@

d1 0 0 0
0 d2 0 0
0 0 d2 0
0 0 0 d1

1

CCA



Notice that T can be rewritten as follows permuting classes 2 and 4

T =

0

BB@

t11 t14 0 0
t14 t44 0 0
0 0 t33 t23

0 0 t23 t22

1

CCA

From the technical point of view, we have noticed that solving this equation is extremely complicated without making
such assumptions. Another assumption we could have used, also required by [5] to solve the same problem, is requiring that
the matrix D

1
2T has diagonal Jordan decomposition. However, this assumption is more complicated to translate at the level

of the structure of the matrices T and D.
From a practical point of view, making such an assumption means that there are classes that annotators can confuse with

one other while they never swap between them other classes. For example, if the problem is to classify images and the classes
are “cat”, “lynx”,“bats”, “bird”, “cougar”; we can think that the annotators have non-zero probability of confusing with each
other the feline classes “lynx”, “cat”, “cougar”, while they have zero probability of assigning a picture of a lynx the label
“bird”. Commutativity is guaranteed in the case of uniform distribution over the classes. There are many applications where
we expect the distribution over the classes to be uniform and not to have any class with higher probability. In general we can
fall back to an approximation of this case by reducing the samples.

C. Proofs

C.1. Proof of Lemma 4.1

Proof. From Eq. (5) we get:

M = TDT = D
1
2TTD

1
2 ! D

� 1
2MD

� 1
2 = T

2 (25)

Note that T and D
1
2MD

1
2 are positive definite (because D and M are positive definite) and hence they have eigenvalue

decompositions of the following form:

T = UT⇤TU
T

T
(26)

D
� 1

2MD
� 1

2 = UM⇤MU
T

M
(27)

where Ux are orthogonal matrices and ⇤x are diagonal positive definite matrices. It then follows that:

T
2 (a)
= UT⇤

2
T
U

T

T
= UM⇤MU

T

M
(28)

where in (a) we used the fact that UT is orthogonal. Since UM⇤MU
T

M
is an eigenvalue decomposition of T 2 we conclude

that:

T = UM⇤
1
2
M
U

T

M
, T

�1 = UM⇤
� 1

2
M

U
T

M
(29)

C.2. Proof of Lemma 4.2: bounds error on the estimation of M

Proposition C.0.1. Let Ma,b be the agreement matrix for annotators a and b defined in Eq. (4) and [Ma,b be the estimated

agreement matrix defined in eq. Eq. (8). For every ✏ > 0 it holds that

Pn(|(Ma,b)ij)� ([Ma,b)ij | < ✏) � 1� 2e�2✏2n
.

And

Pn

⇣
8i, j 2 {1, C}2 |(Ma,b)ij)� ([Ma,b)ij | < ✏

⌘
� 1� 2C2

e
�2✏2n

.

where Pn
denotes the probability according to which the n training samples are distributed, i.e. we are assuming that the

samples are independently drawn according the probability P.



To simplify the notation we will omit the dependency from the annotators in the matrices: M = Ma,b and cM = cMa,b

Mij = P(ya = i, yb = j) and cMij =
1
n

P
n

h=1 1((ya)h = i, (yb)h = j).

Proof. To prove the claim we only need to apply the Hoeffding’s inequality to the random variables Xij

h
= 1yah=i,=ybh=j .

Indeed it holds that 0  X
ij  1 and cMij =

1
n

P
n

h=1 X
ij

h
, while E[Xij

h
] = Mij .

Notice that the random variables Xij

1 . . . X
ij

n
are independent since we assume samples to be independent with respect to

each other and so it follows that (xh, yah , yb,h), (xk, yak , ybk) are independent.rf

P(|E[Xij

h
]� 1

n

nX

h=1

X
ij

h
| > ✏)  2e�2✏2n

. (30)

From the previous equation, using union bounds we can obtain that

P
⇣
8(i, j) 2 {1, C}2 |E[Xij

h
]� 1

n

nX

h=1

X
ij

h
| < ✏

⌘
� 1� 2C2

e
�2✏2n

. (31)

Namely
P
⇣
8(i, j) 2 {1, C}2 |Mij � cMij | < ✏

⌘
� 1� 2C2

e
�2✏2n

. (32)

Lemma C.1. Let A be a matrix in RCxC
so that it exists ✏ > 0 for all i, j |Aij |  ✏. For every p 2 [1,1], if ||.||p denotes

the matrix norm induced by the p-vector norm,

||A||p  C✏.

Proof.

||A||p := sup
x:||x||p=1

||Ax||p

Let x be a vector of p-norm 1. (Ax)i =
P

C

j=1 Aijxj

||Ax||p =
⇣ CX

i=1

���
CX

j=1

Aijxj

���
p⌘ 1

p 
⇣ CX

i=1

⇣ CX

j=1

|Aijxj |
⌘p⌘ 1

p  ✏

⇣ CX

i=1

⇣ CX

j=1

|xj |
⌘p⌘ 1

p

Now, denoting by 1 the vector with all ones, using Hölder inequality we can obtain :

CX

j=1

|xj | = ||1x||1  ||x||p||1|| p
p�1

= ||x||pC
p�1
p

So

||Ax||p  ✏

⇣ CX

i=1

||x||pCp�1
⌘ 1

p
= ✏C||x||p = ✏C

Proof Lemma 4.2. For the previous Lemma it holds that if all the elements of the matrix are less or equal than ✏, the p norm
is bounded by ✏C

So we can derive that

P(||Ma,b � cMa,b||p > ✏) � P
⇣
8(i, j) 2 {1, C}2 |Mij � cMij | <

✏

C

⌘
� 1� 2C2

e
�2 ✏2

C2 n
. (33)



C.3. Proof of Theorem 4.3: bound error on the estimation of T

We start by introducing the following helpful remark and Lemmas.

Remark 2. We defined bT = argmin
B

||B� bU b⇤
1
2
M
bUT ||22, with B that satisfies all the constraints in Eq. (15). We know that the

matrix T we want to approximate satisfies all the constraints in Eq. (15), so by definition

|| bT � bU b⇤
1
2
M
bUT ||22  ||T � bU b⇤

1
2
M
bUT ||22,

from which it follows that

||T � bT ||22  2||T � bU b⇤
1
2
M
bUT ||22

so any bound we will found for ||T � bU b⇤
1
2
M
bUT ||22 holds also for T̂ estimated as in Eq. (14) with a coefficent 2.

Lemma C.2. Let A be a square, symmetric, positive definite matrix, in RC⇥C
and let

p
A the unique positive definite

symmetric, matrix so that

p
A
p
A = A (On the existence of this matrix, see Theorem 7.2.6 at p. 439 in [2]). The bounded

operator Fp : S ! S defined as follow Fp : A =
p
A, where we denote by S the space of symmetric positive definite

matrix, is differentiable and it hold the following upper bound for the induced 2 norm of the derivative

||D[
p
A]||2  1

2
p

�min(A)
||vec(A)||2. (34)

Proof. Let us consider the vector space of square matrices MC(R) with the 2 norm and let D[
p
A] denote the operator that

is the derivative of Fp in this space and D[A] the derivative of A. From the fact that
p
A
p
A = A it follows that

D[
p
A]

p
A+

p
AD[

p
A] = D[A]. (35)

Eq. (35) is a special case of Sylvester equation, and using that
p
A is symmetric can be rewritten as

(IC ⌦
p
A+

p
A⌦ IC)vec(D[

p
A]) = vec(D[A]). (36)

It follow that

vec(D[
p
A]) = (IC ⌦

p
A+

p
A⌦ IC)

�1vec(D[A]) = (IC ⌦
p
A+

p
A⌦ IC)

�1vec(A).

Notice that the eigenvalues of the square root of a symmetric, positive def matrix are the square root of the eigenvalues
of the original matrices. Indeed if A can be decomposed as A = U⇤UT , with U orthogonal matrix, it holds that

p
A =

U
p
⇤UT . Now the eigenvalues of

p
A⌦ IC + IC ⌦

p
A are

p
�i +

p
�j with 1  i, j  C, with �i eigenvalue of A. The

minimum eigenvalue of a symmetric positive def matrix B is the minimum eigenvalue of the inverse, indeed id B = V DV
T ,

with V orthogonal, B�1 = V D
�1

V
T . So the minimum eigenvalue of

p
A⌦IC +IC ⌦

p
A, that is the maximum eigenvalue

of (
p
A⌦ IC + IC ⌦

p
A)�1 is 2�min(

p
A). It follows that

||(IC ⌦
p
A+

p
A⌦ IC)

�1||2 =
q
�max((IC ⌦

p
A+

p
A⌦ IC)�2)

=
q
�min((IC ⌦

p
A+

p
A⌦ IC)2)

= �min((IC ⌦
p
A+

p
A⌦ IC))

=
1

2
p

�min(A)
.

So ||vec(D[
p
A])||2  1

2
p

�min(A)
||vec(A)||2. ||vec(A)||22 =

P
C

2

k=1 a
2
k

for every vecto x of norm 1 (this implies xi < 1)

||Ax||22 =
CX

k=1

CX

i=1

a
2
ki
x
2
i


CX

k=1

CX

i=1

a
2
ki

= ||vec(A)||22.

It follows that the induce 2 norm of the derivative ||D[
p
A]||2  1

2
p

�min(A)
||vec(A)||2



Let T and T̂ be defined as in Eq. (29) and Eq. (13).
The following Lemma holds for two general double stochastic matrices.

Lemma C.3. Let T and bT be two symmetric, stochastic matrices, it holds that :

||T � T̂ ||2 
p
C||T 2 � T̂

2||
�min(T 2)� ||T 2 � T̂ 2||2

and ||T � T̂ ||2 
p
C||T 2 � T̂

2||
�min( bT 2)� ||T 2 � T̂ 2||2

(37)

Proof. From the previous Lemma and the mean absolute value

||
p
A�

p
B||2  ||A�B||2 sup

0✓1
||D[

p
✓A+ (1� ✓)B]||2

For Weyl’s inequality �min(✓T 2 + (1� ✓) bT 2)  �min(✓T 2) + �min((1� ✓) bT 2) = ✓�min(T 2) + (1� ✓)�min( bT 2).

sup
0✓1

||D
q

✓T 2 + (1� ✓) bT 2||2  1

2
sup

0✓1

||vec(✓T 2) + (1� ✓) bT 2)||2
✓�min(T 2) + (1� ✓)�min( bT 2)

 1

2
sup

0✓1

✓||vec(T 2)||2 + (1� ✓)||vec( bT 2)||2
✓�min(T 2) + (1� ✓)�min( bT 2)

 1

2
sup

0✓1

||vec(T 2)||2 + ||vec( bT 2)||2
✓�min(T 2) + (1� ✓)�min( bT 2)

 sup
0✓1

p
C

✓�min(T 2) + (1� ✓)�min( bT 2)

In the last inequality we used that T and bT and doubly stochastic so
P

C

i=1 T
2
ij

 (
P

C

i=1 Tij)2 = 1. So ||vec||2 =
⇣P

C

i=1

P
C

j=1 T
2
ij

⌘ 1
2 

p
C. Moreover deriving 1

✓�min(T 2)+(1�✓)�min(bT 2)
with respect to ✓ we find that

sup
0✓1

1

✓�min(T 2) + (1� ✓)�min( bT 2)
=

(
1

�min(T 2) if �min(T 2) < �min( bT 2)
1

�min(bT 2)
if �min(T 2) > �min( bT 2)

sup
0✓1

1

✓�min(T 2) + (1� ✓)�min( bT 2)
=

1

min(�min(T̂ 2),�min(T 2))
.

Now,

min(a, b) =

(
a = b� |b� a| if a < b

b if b  a
(38)

We notice that for symmetric matrices ||A||2 =
p

�max(A)2 =
p

(�max(A))2 = |�max(A)|. So we can Since T
2 � T̂

2

is symmetric: ||T 2 � T̂
2||2 = |�max(T 2 � T̂

2)|.
It follows that

min(�min(T̂
2),�min(T

2)) � �min(T
2)� |�min(T

2)� �min(T̂
2)| (39)

� �min(T
2)� |�min(T

2)� �min(T̂
2)| (40)

� �min(T
2)� |�min(T

2 � T̂
2)| (41)

� �min(T
2)� |�max(T

2 � T̂
2)| (42)

= �min(T
2)� ||T 2 � T̂

2||2. (43)

In the previous equations we use that |�min(T 2)� �min(T̂ 2)|  |�max(T 2 � T̂
2)|. We now prove that it is true. Suppose

without loss of generality that �min(T 2) > �min( bT 2). If it is the case �min(T 2)� �min(T̂ 2) = �min(T 2) + �max(�T̂
2) 

�max(T 2 � T̂
2)  |�max(T 2 � T̂

2)|, where we used Weyl’s inequality.
If the �min(T 2) > �min( bT 2) following the same path we obtain �min( bT 2)� �min(T 2)|  |�max(T̂ 2 � T )|.
it follow that �min(T 2)� �min(T̂ 2) < ||T 2 � T̂

2||2



Proof Theorem Theorem 4.3. From Lemma C.3 we know that

||T � T̂ ||2 
p
C||T 2 � T̂

2||
�min(T 2)� ||T 2 � T̂ 2||2

(44)

Now, in general
p
Cx

b� x
< ✏ iif x < b

✏p
C + ✏

.

It follows that

P(||T � bT ||2 < ✏) = P
✓
||T 2 � bT 2||2 < �min(T

2)
✏p

C + ✏

◆

or

P
�
||T � bT ||2 < ✏

�
= P

�
||T 2 � bT 2||2 < �min( bT 2)

✏p
C + ✏

�
� P

�
||T 2 � bT 2||2 <

�min( bT 2)p
C + 1

✏
�

Since we can assume ✏  1 (if n >
C

2(
p
C+1)2(ln(2C2)2

2�min(T̂ )2
. Notice that we are interested in convergence properties of T̂ , so

we are interested in founding these bounds for small ✏.
Now T

2 � bT 2 = D
1/2(M � M̂)D1/2 .

So ||T 2 � bT 2||2  ||M � M̂ ||2||D1/2||22 = ||M � M̂ ||2||D||2 = ||M � M̂ ||2�max(D). As a consequence :

P(||T � bT ||2 < ✏) � P
 
||M � M̂ ||2�max(D) <

�min( bT 2)p
C + 1

✏

!

= P
 
||M � M̂ ||2 <

�min( bT 2)

(
p
C + 1)�max(D)

✏

!

� 1� 2C2
e
� ✏2

C2(
p

C+1)2
�min( bT2)

2

�max(D)2
n

For the inverse:
T

�1 � bT�1 = T
�1( bT � T ) bT�1 (45)

So,

||T�1 � bT�1||2  ||T�1||2|| bT � T ||2|| bT�1||2 =
1

�min(T )�min( bT )
|| bT � T ||2

Following what we did for the  in

1

�min(T )�min( bT )
 1

min(�min(T 2),�min( bT 2))
 1

�min( bT 2)� |�min(T 2)� �min( bT 2)|
Than for Eq. (39)

1

�min(T )�min( bT )
 1

�min( bT 2)� ||T 2 � bT 2||2
So

||T�1 � bT�1||2  ||T � bT ||2
�min( bT 2)� ||T 2 � bT 2||2

 ||T � bT ||2
�min( bT 2)� 2||T � bT ||2

Where we used that
||T 2 � bT 2||2  ||T (T � bT ) + (T � bT ) bT ||2  2||T � bT ||2



because T and bT doubly stochastic.
So

P
⇣
||T�1 � bT�1||2  ✏

⌘
� P

 
||T � bT ||2  ✏

�min( bT )
1 + 2✏

!
(46)

� P
⇣
||T � bT ||2  ✏

3
�min( bT )

⌘
(47)

� 1� 2C2
e
� ✏2

9C2(
p

C+1)2
�min( bT2)

4

�max(D)2
n (48)

C.4. Proof of Theorem 4.6: generalization gap bounds

Proposition C.3.1. Let `(t, y) be any bounded loss function and let l(t, y) be the backward loss function defined in Eq. (21a).

We define l̂(t, y) as the loss obtained using b��1 := bT�1
. If µ is the constant that bounded the loss ` , i.e.

sup(t,y)2[0,1]C⇥Y `(t, y)  µ. For every ✏

P(|l(t, y)� l̂(t, y)| � ✏)  2C2
e
�2 ✏2

C2µ2L�,p
n

(49)

Proof of Proposition C.3.1. Using Cauchy–Schwarz inequality and the fact that ` is bounded by µ and that we obtain:

|l(t, y)� l̂(t, y)| = |(T�1 · `(t)� bT�1 · `(t))y|

= |[(T�1 � bT�1)`(t)] · ey|

 ||(T�1 � bT�1)`(t)||2||ey||2
 ||T�1 � bT�1||2||`(t)||2
 µ||T�1 � bT�1||2

So

P
�
|l(t, y)� l̂(t, y)|  ✏

�
� 1� 2C2

e
� ✏2

µ29C2(
p

C+1)2
�min( bT2)

4

�max(D)2
n

Proof Lemma 4.5 . For every f we have

|R̂
l̂
(f)�Rl,D(f)|  |R̂

l̂
(f)� R̂l(f)|+ |R̂l(f)�Rl,D(f)|.

So using union bounds and by the classic results on Rademacher complexity bounds [4] and by the Lipschitz composition
property of Rademacher averages, Theorem 7 in [3] it follows that

Pn

⇣
sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||T�1||2Rn(F) +

✏

2

⌘
� (50)

Pn

⇣
sup
f2F

|R̂
l̂
(f)� R̂l(f)|+ sup

f2F
|R̂l(f)�Rl,D(f)|  L||T�1||2Rn(F) +

✏

2

⌘
� (51)

1� Pn

⇣
sup
f2F

|R̂
l̂
(f)� R̂l(f)| >

✏

4

⌘
� Pn

⇣
sup
f2F

|R̂l(f)�Rl,D(f)|  L||T�1||2Rn(F) +
✏

4

⌘
(52)

� 1� Pn

⇣
sup
f2F

|R̂
l̂
(f)� R̂l(f)| >

✏

4

⌘
� 2e�

n
2

�
✏
4µ

�2
(53)



Now,

Pn

⇣
sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||dT�1||2Rn(F) + ✏

⌘
=

Pn

⇣
sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||dT�1||2Rn(F) + ✏

⌘

Pn

⇣
sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||T�1||2Rn(F) + (||dT�1||2 � ||T�1||2)Rn(F) + ✏

⌘
�

1� Pn

⇣
{sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||T�1||2Rn(F) +

✏

2
} and {(||dT�1||2 � ||T�1||2)Rn(F)  ✏

2
}
⌘
�

1� Pn

⇣
sup
f2F

|R̂
l̂
(f)�Rl,D(f)|  L||T�1||2Rn(F) +

✏

2

⌘
� Pn

⇣
(||dT�1||2 � ||T�1||2)Rn(F)  ✏

2

⌘
�

1� 2e�
n
2

�
✏
4µ

�2
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C.5. Proof of Lemma 4.4

Lemma C.4. For infinite annotators the posterior distribution over every sample calculated using the true T converges to

the dirac delta distribution centered on the true label almost surely (i.e. limH!1 pc,i
a.s.
= I(yi = c)).

Proof.
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where Ni,j is the amount of annotators that labeled sample i as class j. Note that as a consequence of the strong law of large
numbers for the conditional random variables that are independent with the same conditional distribution we have that the
following equation is true almost surely:
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Combining we get:
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(a)
= 1(yi = c) (61)

where in (a) we used the fact that due to the assumption that T is strictly dominant then the term
Q

C

j=1 T
Tyi,j

k,j
is maximized

when k = yi and this term is strictly larger than all the other ones.

C.6. Proof of Proposition 5.1: relationship between ⇢ and .

Proof.
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In the previous equation we used that T is symmetric.
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If the distribution of the true label y is symmetric the probability vector ⌫ = ( 1
C
, . . . ,

1
C
) So ⌫
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From which it follows that
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D. Experiments

D.1. Estimation of T

From Fig. 3 we can notice that the error in the estimation decreases as 1p
n

the n number of samples increases. The results
with respect to the minimum eigenvectors and with respect to the maximum diagonal value are consistent with each other
and very similar.

The results were obtained from a synthetic, generated dataset in which we generate the classes predicted by the annotators
according to various T matrices, choosing as all possible (admissible) combinations that have [0, 0.2, 0.4] out of the diagonal
and [0.6, 0.8, 1.0] on the diagonal. We can notice in Fig. 3 that as the number of annotators increase the estimation becomes
more precise.

For experiments with 2, 3 and 7 annotators we generate T as all possible symmetric ,stochastic and diagonally domi-
nant matrices that have [0.1, 0.2, 0.3, 0.4, 0.5] out of the diagonal and [0.6, 0.8, 1.0] on the diagonal. Classes are uniformly
distributed. For experiments with 10 annotators we generate the matrices T as all possible (admissible) combinations that
have [0, 0.2, 0.4] out of the diagonal and [0.6, 0.8, 1.0] on the diagonal. In this case we both include uniform distribution
of the true labels among the 4 classes and all the distributions that are so that the four classes can be partitioned in two
groups of indices so that classes in the same group have the same probability. Namely if the distributions on the classes is
given by = [d1, d2, d3, d4], admissible distributions are the ones for which there are two subsets if indices I and J so that
I[J = {0, 1, 2, 3, 4} and for all i, k 2 I : di = dk. The probability of the classes take value in [0.1, 0.2, 0.3, 0.4]. This means
that for instance we will find the distribution [0.3, 0.3, 0.3, 0.1] or the distribution [0.4, 0.1, 0.1.0.4] but not [0.3, 0.2, 0.1, 0.4].

Results for 2, 3 and 7 annotators were obtained by averaging over 3 runs. Results for 10 annotators were obtained by
averaging over 10 runs. The error that appears on axis y in the plots is the difference in norm 2 of the true matrix T and the
estimated matrix bT , obtained as explained in Sec. 4.1.

We recall that if the minimum eigenvalue is 1 the matrix T is the identity and thus the annotators always predict the exact
class. The smaller the minimum eigenvalue the noisier the dataset will be.

With Fig. 4 we wanted to see if datasets with a higher level of noise have higher approximation errors than less noisy
datasets. The plots show a minor trend: as the noise decreases, the estimation error also decreases. The trend is not particu-
larly noticeable perhaps due to the large number of annotators.

We recall that if the minimum eigenvalue is 1 or if the maximum value of the diagonals is 1 the matrix T is the identity
and thus the annotators always predict the exact class.

The smaller the minimum eigenvalue or the maximum value on the diagonal, the noisier the dataset will be.

D.2. Synthetic datasets

The synthetic dataset consists of two-dimensional features (x = (x1, x2)). To create the dataset, we generate points
uniformly at random in [0, 1]2. Each of these points is then assigned a label (y) based on the predetermined label distribution
for each experiment. We divide the space into sections using lines parallel to the bisector of the first and third quadrants
(specifically, x2 = x1). See Fig. 5 for an example. Our dataset comprises 10000 samples. In Fig. 6 we see, for different



(a) 2 classes 2 annotators (b) 3 classes 2 annotators

(c) 4 classes 2 annotators (d) 4 classes 7 annotators

Figure 3. Error in the Estimation of T . The error is ||T � bT ||2. We aggregated the matrices that have the same minimum eigenvalue
rounded at the first decimal.

(a) 4 classes 7 annotators (b) 4 classes 10 annotators

Figure 4. The plots show the trend of the error estimation as the minimum eigenvalue increases

amounts of noise, the results of the different aggregation methods when using a neural network without hidden layer (i.e. a
Logistic Regression) trained with Cross Entropy Loss. When noise is absent, we check that, as expected, the results are all
identical. In the presence of noise (0.6 and 0.8), we notice in general that the random aggregation is the worst. The others are
equivalent, except for the posterior (ours) which obtains slightly higher results. Average, on the other hand, obtains a slightly
lower value with minimum diagnal value of T equal to 0.8. However, attention must be drawn to the fact that the y-scale of
the graph is very narrow and that in the case of 4 classes with a dataset constructed as in Fig. 5, a linear classifier is not able
to reach perfect accuracy.



Figure 5. Synthetic data for 4 classes with distribution (0.4,0.1,0.4,0.1)

Figure 6. 5 annotators, 4 classes, no hidden layer.

Figure 7

Referring to Fig. 2 and the other figures of this section. The minimum value on the diagonal of the matrix T denotes
the annotators’ probability of assigning the correct label for the class in which the noise is maximum. As expected, random
aggregation is the lowest performing method, and for all noise rates soft label methods perform better than methods using
hard labels.

Fig. 6 shows the accuracy for the case of 4 classes and a NN with no hidden layer and 5 annotators. We can notice that
even in the case where the number of hidden neurons is not enough to obtain a perfect accuracy, so the classifier is not the
best possible, our approach for dataset with high noise performs better.

The posteriors distribution are computed using the estimated T .

D.3. Implementation details

Logistic Regression is used for synthetic data with 2 classes and a neural network with hyperbolic tangent activation
function with one hidden layer is used for the dataset with more classes. The data are separated into train, validation and
test set using a split 64%, 16%, 20%, The models are trained with the following configuration: batch size 256, learning rate
10�3, maximum number of epochs 1000, early stopping of training based on validation loss with a patience of 100 epochs.
Once the training is finished, the model with the lowest validation loss is retrieved.



For the experiments with CIFARN-10, the model, Resnet 34, is trained with the following configuration: batch size 128,
learning rate 10�3, with momentum (0.9) and learning rate decay (0.0005) the maximum number of epochs 1000, we also
used early stopping of training based on validation loss with a patience of 100 epochs. We didn’t use data augmentation. For
the pretrained model we used the model provided by torchvision, https://pytorch.org/vision/main/models/
generated/torchvision.models.resnet34.html#resnet34.

All code is written in Python 3 Programming Language. The cvxpy package is used for the optimization of bT , and the
pytorch library is used for the models. All the experiments have been run on a machine with this configuration: AMD EPYC
7373 Processor, 64GB RAM and NVIDIA GeForce RTX A4000 GPU.
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