
Learning and Aggregating Lane Graphs for Urban Automated Driving

- Supplementary Material -
Martin Büchner∗, Jannik Zürn∗, Ion-George Todoran, Abhinav Valada, and Wolfram Burgard

In our supplementary material, we expand upon multiple
aspects of our paper. In Sec. S.1, we visualize exemplary data
from our compiled UrbanLaneGraph dataset and detail pre-
and post-processing methods. We also discuss the proposed
benchmark for evaluating lane graph prediction models.

In Sec. S.2 we give additional detail on evaluation metrics.
In Sec. S.3, we discuss the sampling of the annotated graph
into a representation suitable to train our LaneGNN model.
In Sec. S.4, we provide additional explanations on the model
architectures, the training procedures, and hyperparameter
selection. In Sec. S.5, we explain our graph aggregation
in more detail compared to the main manuscript. Finally,
in Sec.. S.6, S.7, and S.8, we provide additional ablation
studies and evaluations for our Successor-LGP, Full-LGP,
and Planning tasks, respectively.

S.1. UrbanLaneGraph Dataset Details
As detailed in the main manuscript, we introduced a large-

scale lane graph dataset including aligned high-resolution
aerial images. In the following, we give a thorough descrip-
tion of the dataset curation process and how we designed the
lane graph prediction benchmark.

S.1.1. Dataset Curation

S.1.1.1 Annotation Pre-Processing

Our graph annotation source is the large-scale Argov-
erse2 [29] autonomous driving dataset, which includes HD
map annotations, including lane graphs, for all scenarios en-
tailed in the dataset. In the context of the dataset, a scenario
is a small-scale region (50m diameter). Our goal is to esti-
mate arbitrarily large lane graphs, rendering the per-scenario
graph annotation scheme insufficient. We aggregated all sce-
nario graph annotations into a per-city global graph. How-
ever, we found that many scenarios overlap while the nodes
in the respective overlaps do not have a perfect positional
match. Therefore, we implemented an annotation merging
procedure, producing the desired globally consistent ground-
truth graph.

S.1.1.2 Image-Graph Alignment

The coordinate system of the annotations is not consistent
with our aerial image coordinate frame. We therefore, trans-
form the graph annotations into the image coordinate system

employing the Kabsch-Umeyama [23] algorithm, in which
a set of selected point pairs in the source and in the target
frame are aligned, minimizing a least-squares objective func-
tion. The solution to the minimization problem comprises
the optimal translation, rotation, and scaling that maps points
from one frame into the other.

S.1.1.3 Regional Train-Test Splits

We split the dataset into disjoint train and test splits on a
geospatial basis. Concretely, for the experiments carried
out in this work, we select a challenging subset of the anno-
tated regions within each city as a separate test split. The
remaining regions are leveraged for model training. For all
tasks and models, we consistently use the same training and
testing regions.

S.1.1.4 Graph Sampling into Crops

In order to generate samples for training our LaneGNN
model, we sample the dataset into crops. As illustrated
in our manuscript, for our successor lane graph prediction
task, the input to our model is a 256 px × 256 px crop of
the original birds-eye view image. A sample consists of the
aerial image crop and the lane successor graph that starts at
the bottom center position of the crop. Crop positions are
selected according to the position of nodes in the lane graph
annotations. We also crop the annotated graph in order to
use only graph nodes and edges as learning targets that are
visible in the respective crop.

As described in the main manuscript, for aggregating
the locally predicted successor graphs into a global graph,
we facilitate an iterative aggregation scheme where the po-
sition and orientation of the next crop are determined ac-
cording to the graph prediction in the current crop. This
procedure can be interpreted as imitation learning from ex-
pert data, which are the crops present in the training data.
This can produce unstable trajectories that do not follow
lanes when deploying the model if the training data distri-
bution does not cover the full distribution of crops from
arbitrary positions and orientations. We, therefore, add
Gaussian noise w.r.t the crop position (xcrop, ycrop) and
orientation γcrop when sampling training data crops. Con-
cretely, we sample xcrop ∼ N (xgt, 5), ycrop ∼ N (ygt, 5),
and γcrop ∼ N (γgt, 0.3) . The units are px and rad, re-
spectively. This crop sampling scheme allows the model

Figure S.1. Exemplary visualization of aerial imagery with a pixel-aligned lane graph for multiple US cities. Our UrbanLaneGraph dataset features a wide
range of environments, including rural, suburban, and urban areas. The graph annotations feature a wide range of topological complexity scales from straight
road sections to large-scale intersection scenarios with multiple incoming and outgoing lanes. The aerial images provided with the dataset have challenging
visual properties such as prominent shadows, and occlusions of streets due to trees and other vegetation.

to recover from crop positions and orientations that are not
well-aligned with the ground-truth graph.

S.1.1.5 Centerline Regression Data

The centerline regression targets are obtained by rendering
an inverse signed distance function from the graph as an im-
age with the same domain as the aerial image crop. Outputs
of models trained on this are visualized in Fig. S.4 (lane
centerline regression) and in Fig. S.3 (ego lane centerline

regression).

S.1.2. Benchmark

We envision the previously described dataset as a ref-
erence for evaluating future approaches. To facilitate eas-
ier and quantitatively fair comparison between different ap-
proaches, we provide an easy-to-use graph prediction bench-
marking API. For calculating all our metrics and generating
visualizations, we leverage the networkx [13] Python library.

(a) (b) (c) (d) (e)

Figure S.2. Visualization of the data modalities that serve as the input to our LaneGNN model. From left to right: a) An aerial BEV image of a local scene,
including the virtual agent pose for this crop. b) The regression output Slane of our lane regression model. c) The regression output Segolane of the agent-centric
ego lane regressor. d) The lane graph node proposal that potentially holds the successor graph. e) The edge proposal list densely connects neighboring
proposal nodes.

Figure S.3. Exemplary visualizations of our ego lane regression model on random crops from the test split of our dataset.

The overall information flow of our benchmarking
system is visualized in Fig. S.5. Given an aerial im-
age, the to-be-evaluated model predicts a graph g pred.
The LaneGraphEvaluator expects g pred to be a
networkx-type object; the conversion of the model output
into networkx format may be implemented by the authors
in a to networkx() function. Given a predicted graph
in networkx format, our evaluator queries the ground-truth
graph annotations and crops the annotations to cover the
same region as the predicted graph. Subsequently, all de-
scribed metrics are evaluated and exported. Optionally, vi-
sualizations to rasterized or vector image formats may be
produced. Finally, path-planning experiments on the pre-
dicted and ground-truth graphs may be conducted, evaluated,
and visualized.

S.2. Evaluation Metrics Details

In the following, we detail the GEO and TOPO metrics,
proposed by He et al. [15] which were used, among others
metrics, to evaluate or experiments.

S.2.1. GEO Metric

The GEO metric aims to quantify the quality of the spa-
tial position of vertices in the predicted graph, ignoring any
topological properties (the existence of edges between the
vertices). To this end, following He et al. [15], we densely
interpolate the predicted graph Gpred = {Vpred , Epred} and
the ground-truth graph Ggt = {Vgt , Egt} such that any two
adjacent vertices have the same distance from each other.
Subsequently, a 1:1 matching between Vpred and Vgt is com-
puted, giving rise to the matching precision and matching

Figure S.4. Exemplary visualizations of our lane regression model on random crops from the test split of our dataset.

def plan_paths()

def evaluate_paths()

{
 "apls": 0.235,
 "graph_iou: 0.461,
 ...
}

Graph Metrics

{
 "mmd": 0.235,
 "med": 0.461,
 "sr": 0.142,
}

Planning Metrics

results.json

Visualizations

def calc_apls()

def evaluate_graphs()

def visualize_graphs()

def visualize_paths()

def export_results()

def calc_iou()

...

class LaneGraphEvaluator(g_gt, g_pred)Model
Predictions

Aerial
Input Image

Graph
Annotations

to_networkx()

to_networkx()

roi_cropping()

Prediction
Pipeline

Figure S.5. Basic information flow for our graph evaluation benchmark. We provide basic routes for evaluating and visualizing lane graph predictions and
annotations. Our evaluator expects the predicted graph(s) g pred and the ground-truth graph annotations g gt as networkx objects.

recall, denoted as GEO precision and GEO recall.

S.2.2. TOPO Metric

Building on top of the GEO metric, the TOPO metric
takes vertex connectivity through edges into account as well.
Given a vertex pair (Vgt , Vpred) obtained from the GEO
metric, subgraphs SVgt

gt and S
Vpred

pred are created by walking a
maximum distance D on the graphs. We select D = 50m.

The so-created sub-graphs may be compared according to the
GEO metric and averaged over all sub-graphs to obtain the
overall TOPO metric. The graph-walking procedure allows
penalizing missing links or false-positive graph branches as
they will produce poorly aligned sub-graphs Sgt and Spred .

S.3. Target Graph Sampling for Lane Graph
Learning

As described in the main manuscript, our LaneGNN
model learns to predict node and edge scores for a proposal
graph. The ground-truth graph according to the dataset an-
notations, however, cannot without modification be used as
a learning target since its node positions do not correspond
to the node points obtained from the Halton-sequence-based
node sampling mechanism (see S.3.1). In the following, we
describe how a target graph used for learning the LaneGNN
model can be obtained from lane graph annotations.

Figure S.6. The ego lane regressor model output, binned into 6 discrete
thresholds from 0 to 1 for visualization purposes. The region of sampled
node proposals for our LaneGNN model is sensitive to the choice of thresh-
old cutoff value.

S.3.1. Node Sampling

In order to generate uniformly distributed 2D node po-
sitions in the rectangular image domain, we use Halton se-
quences. Their advantage over a per-dimension uniform
random sampling of points in a 2D rectangle is their compar-
atively low discrepancy, leading to an approximately equal
spacing of neighboring points across the 2D plane, rendering
them the preferred choice for sampling random uniformly
but non-regular distributed node proposals. For the experi-
ments in our manuscript, we generate Nnode = 400 Halton
points for each sample. Finally, we filter the generated node
positions based on the obtained ego centerline regression
mask. Thus, the effective number of nodes is vastly de-
creased on average. We visualize the sampled Halton points
for an exemplary scene in Fig. S.2d.

S.3.2. Edge Sampling

Due to the large number of possible edges in the num-
ber of nodes |E| = O(N2

node), we sample edge propos-
als between pairs of nodes that have a Euclidean distance
d ∈ [dmin, dmax] such that only neighboring node are as-
signed a proposal edge. We visualize the sampled edges

for an exemplary scene in Fig. S.2e. Furthermore, we only
include edges in the edge proposal list that do not span over
regions with low ego centerline regression output.

S.3.3. Node and Edge Scoring

Target node scores are a function of the proposal node
distance to the ground-truth graph. More precisely, we score
the node according to s(ni) =

(
1− dL2(ni, Ggt)

)8
where

dL2(·, ·) denotes the euclidean distance. We also assign a
binary is-endpoint label to each node. As described in the
main manuscript, in addition to predicting node scores, our
LaneGNN model also entails a node classification head, dis-
criminating between lane endpoint nodes and non-endpoint
nodes. This distinction allows for efficient proposal graph
pruning during model inference. The positive is-endpoint
label is assigned to the closest node in the proposal graph
the ground-truth graph endpoint for each endpoint in the
ground-truth graph.

For edge scoring, we empirically found that a binary
scoring function (in contrast to a continuous scoring func-
tion for the node scores) leads to favorable graph learn-
ing performance. To produce this scoring, we leverage
a two-step process: First, we evaluate a similar function
to the node scoring function but add an angle penalty to
the scoring function which penalizes a difference in the
relative angle between the proposal edge and the clos-
est edge eproxgt in the ground-truth graph. Concretely:

s(eij) =
(
1 − d∠(eij , e

prox
gt)dL2(eij , Ggt)

)8
. Second, we

find minimum-cost paths from the lane starting node to the
endpoint node(s) through the proposal graph, where the edge
traversal cost is the reciprocal of the edge score. All edges
along the minimum-cost paths from the start node to the end
nodes are assigned a score of one while all remaining edges
are assigned a score of zero.

S.4. Model Details

S.4.1. Image Skeletonization Baseline

Our image skeletonization baseline is obtained by first
thresholding the predicted ego centerline regression model
output to generate a binary image of high-likelihood succes-
sor lane graph regions. We subsequently skeletonize [32]
the binary image and obtain a 1-pixel wide representation
of this region (On-pixels in the binary image). Finally, we
convert this representation into a graph by considering all
On-pixels that have n = 1 neighbor pixels (lane starting
point or endpoint) or n >= 3 neighbor pixels (lane split
point), forming graph nodes. To obtain the graph edges, we
add a graph edge for all pairs of nodes that are connected
by regions of On-pixels that do not contain any other nodes
between the two nodes in consideration.

Table S.1. Details on the used architecture of the LaneGNN modelM. All ReLU-activated MLP layers except for the ones under Classification which are
ReLU-activated up to the last layer followed by Sigmoid.

Stage Layer Transformation Parametrization

Encoding

Aerial edge features fe,bev
enc (Xe,bev) = H

(0)
e,bev ∈ RB×E×64 ResNet-18 (non-pretrained)

Geometric edge features fe,geo
enc (Xe,geo) = H

(0)
e,geo ∈ RB×E×16 MLP(4, 8, 16),ReLU

Node features fv
enc(X) = H

(0)
v ∈ RB×N×16 MLP(2, 8, 16),ReLU

Fusion Edge Feature Fusion fe
fuse([H

(0)
e,bev ,H

(0)
e,geo]) = H

(0)
e ∈ RB×E×32 MLP(16 + 64, 64, 32),ReLU

Message
Passing
l=1...L

Edge feature update fe(H
(l−1)
i ,H

(l−1)
ij) = H

(l)
e ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

Node feature update

fpred
v (H

(l−1)
i ,H

(l−1)
ij ,H

(0)
i) = H

(l)
v,pred ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

f succ
v (H

(l−1)
i ,H

(l−1)
ij ,H

(0)
i) = H

(l)
v,succ ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

fv(H
(l)
i,pred,H

(l)
i,succ) = H

(l)
v ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

Classification

Edge Activation Scores fe
cls(H

(L)
e) = Ee ∈ RB×E×1 MLP(32, 16, 8, 1),ReLU + Sigmoid

Node Activation Scores fv
cls(H

(L)
v) = Sv ∈ RB×E×1 MLP(16, 8, 4, 1),ReLU + Sigmoid

Terminal Node Scores fv,t
cls (H

(L)
v) = Tv ∈ RB×N×1 MLP(16, 8, 4, 1),ReLU + Sigmoid

Table S.2. Training details for the three models contained in the full
LaneGNN modelM.

Batch Size Epoch Learning Rate Weight Decay

Lane Regressor 8 50 10−3 10−3

Ego Lane Regressor 8 50 10−3 10−3

Graph Neural Network 2 100 10−3 10−4

S.4.2. Centerline Regression Architectures

For the centerline regression and the ego centerline re-
gression models, we use the same model architectures. In
both cases, we use a PSPNet architecture [33] with a ResNet-
152 backbone. The number of input channels is 3 (RGB
color channels) for the centerline regression model while it
is 4 (RGB + 1 channel output of centerline regression model)
for the ego centerline regression model. Additional training
parameters can be found in Tab. S.2.

S.4.3. LaneGNN Architecture

The graph neural network architecture detailed in Ta-
ble S.1 is trained for 100 epochs using a learning rate of
10−3 and a batch size of 2. The used optimizer is Adam
with weight decay λ = 10−4 and β = (0.9, 0.999). Empiri-
cally, we found that the network is relatively insensitive to
variations in the learning rate, batch size, and the number of
message passing steps L = 6. This is further demonstrated
in Tab. S.3.

S.5. Graph Aggregation

In order to aggregate our successive predictions into
a globally consistent solution we take the parallelizable

approach of running multiple drive()-instances (see
Algo. 1) each starting at a different initial pose pi =
(xi, yi, γi) up to a certain maximum number of steps or a
maximum number of branches is reached. Each initial pose
pi could either be the actual pose obtained from localization
when driving or a pose inferred from a segmentation mask of
the aerial image that also includes yaw regression. Next, we
follow the procedure described in Algo. 1, which starts driv-
ing on the birds-eye view image. Sequentially, we predict a
successor lane graph Gpred that is pruned via multiple runs
of Dijkstra’s algorithm using the predicted terminal node
scores Tv as target nodes while neglecting already traversed
corridors between runs.

Before merging the predicted graph Gpred into Gagg , we
transform each predicted graph into global coordinates and
employ multiple iterations of Laplacian smoothing:

X← (I− γL)X , (1)

which smoothens the original node positions X based on the
graph Laplacian L of the undirected representation of Gpred.
The graph Laplacian is given by

L = D−A, (2)

where D is the degree matrix and A is the adjacency ma-
trix. Hereby, the position of each node is influenced by
its first-degree neighbors. The scalar γ denotes a smooth-
ing intensity parameter while I is the identity matrix. The
smoothing evens out position irregularities obtained from the
initial Halton sampling. In the following, we aggregate the
smoothed graph Gpred with a consistent representation of
all prior predictions Gagg (see Sec. S.5.1) and traverse it by
steadily exploring the edge that shows the highest successor-
tree weight up to a depth of 10. The depth is limited because

Figure S.7. Left: Visualization of consecutive successor graph predictions for t ∈ [0, 1, ..., 100] time-steps. Right: The aggregated graph.

potentially existing loop closures of the lane graph would
induce infinite tree weights. As predicted intersections pro-
vide multiple future branches of which only one is explored
at a time, we queue the remaining ones for later exploration.
As soon as the next edge is selected, we step forward by one
edge length, which however is subject to hyperparameter op-
timization. After updating the pose, our approach is able to
make predictions on new grounds while further updating and
improving the aggregated lane graph representation Gagg.
This is illustrated over 100 time steps in Fig. S.7.

Depending on the mode of operation, we are able to
terminate a current branch as soon as a pose shows significant
similarity to an already visited pose stored in a list. In
addition, we also terminate a branch if a certain maximum
number of steps is traveled across a number of branches
combined or the number of explored branches exceeds a
certain value. Furthermore, every single branch can also be
terminated after a designated number of steps. If a branch
suddenly terminates, we filter the currently aggregated graph
Gagg by node out-degrees of two and larger to obtain split
points with unvisited edges/poses that provide grounds for
further exploration. The edge with the largest successor-tree
weight is investigated next if exceeds a certain threshold. We
have listed all used parameters in Sec. S.7.

Each and every aggregated output Gagg produced by one
of the drive()-instances are finally aggregated one by one
using the function aggregate() provided with Algo. 2,
which is able to merge arbitrary graphs. In general, it would
also be possible to aggregate multiple returns of drive()
in an agglomerative fashion to increase inference speed for
HD map creation. If necessary as a postprocessing step, we
delete all but one parallel branch with the same source and

end node if they do not show any intermediate branching
and contain less than six consecutive edges.

Overall, we observe an average runtime of 1 s per model
forward-pass and aggregation step on our development ma-
chine (NVIDIA RTX 3090, AMD EPYC CPU @ 3.65GHz).
With parallel execution, processing a map tile (106 m2) re-
quires ∼7min.

S.5.1. Lateral Aggregation Scheme

In the context of lane graphs, particular longitudinal
node coordinates are merely a consequence of the cho-
sen sampling distance. The proposed lateral graph aggre-
gation scheme disregards deviations in longitudinal node
position. Thus, we merge newly predicted graphs into an
existing graph while updating it solely based on lateral de-
viations. Before doing so, we remove unvalidated splits
and merges from the already existing aggregated graph
by disregarding all splits or merges that do not exhibit a
successor-edge tree of at least length three or do not show
sufficient successor-tree (splits) or predecessor-tree (merges)
weights. To do so, we construct local temporary aggregation
graphs LocalAggGraph(A) for each newly predicted node
A ∈ Gpred as depicted in Fig. S.8. This is done to decrease
the number of distance calculations necessary, which is cru-
cial for large graphs Gagg containing thousands of nodes.
Thus, each LocalAggGraph(A) represents the region of
Gagg in immediate vicinity of node A ∈ Vpred whereas
Gpred = (Vpred, Epred). In the next step, we obtain the
nearest edge contained in Gagg as well as the lateral dis-
tance a to that edge. Similarly, we obtain the closest and
second closest nodes I and II incident to that edge. If the
lateral distance a < athresh, we see the grounds for updat-

Algorithm 1: drive(pinit, Isat)
1 Gagg ← InitializeEmptyAggGraph()
2 p← InitializePoseOnMap(pinit)
3 p← PadSatImageSymmetrically(Ibev)
4 stepCounter = 0
5 branchAlive = True
6 branchAge = 0
7 branchCounter = 0
8 numFutBranches = 1
9 do

10 if stepCounter > maxSteps ∨ branchCounter >
maxNumBranches ∨ branchAge >
maxBranchAge then

11 break
12 if branchAlive then
13 branchAge = branchAge+ 1
14 else
15 succEdges, numFutBranches←

GetUntraversedEdgesAtSplits(Gagg)
16 p← GetNewPoseOfMaxScoreEdge(succEdges)

17 GI , Segolane, Slane ← ConstrAttribGraphManifold(Ibev ,p)
18 Ee, Sv ,Te ← PredictSuccessorGraph(GI)

19 Ĝ← PruneTraverseLaneGraph(GI ,Ee, Sv ,Te)

20 Gpred ← TransformLaneGraphToGlobalCoords(Ĝ)
21 Gpred ← ApplyLaplacianSmoothing(Gpred)

Gagg ← Aggregate(Gagg , Gpred)
22 branchAlive,p← StepForwAlongCurrBranch(p, Gagg)

23 while numFutBranches ∨ branchAlive;
24 return Gagg

ing the node positions of I and II using a weighting-based
scheme involving the weights of the involved aggregated
nodes (obtained from previous aggregations) as well as the
initial weight of each newly predicted node A. To do so, we
calculate the angles α, β and, γ as given by Eq. 3 in order to
further calculate the lengths b1 and b2 as shown in Fig. S.8:

α = arccos

(
a

c1

)
, β = arctan

(
dAI
y

dAI
x

)
, γ =

π

2
− α− β (3)

b1 = c1 sin(α), b2 = c2 sin

(
arccos

(
a

c2

))
. (4)

These lengths are used to measure the relative influence
of A onto I as well as II, respectively. We create temporary
nodes A′ and A′′ to ease merging (Eq. 5) in the next step:

A′ = A + b1

[
cos(γ)
sin(γ)

]
, A′′ = A + b2

[
cos(γ)
sin(γ)

]
. (5)

Finally, we update the position of I and II using a
weighting-based approach as described with Eq. 6 and Eq. 7
in the following:

I∗ =
1

ωagg,I + ωA,I

(
ωagg,I

[
Ix
Iy

]
+ ωA,I

[
A′

x

A′
y

])
, (6)

II∗ =
1

ωagg,II + ωA,II

(
ωagg,II

[
IIx
IIy

]
+ ωA,II

[
A′′

x

A′′
y

])
, (7)

Figure S.8. Geometric visualization of our lateral graph aggregation scheme.
We visualize the predicted graph Gpred in blue and the graph to be merged
into Gagg in red.

Figure S.9. Additional qualitative results of our LaneGNN model. In the
top row, we illustrate success cases. In the bottom row, we show interesting
failure cases. The depicted graphs are not Laplace-smoothed.

where ωA,I and ωA,II are defined using c1, c2 as follows:

ωA,I = 1− c1
c1 + c2

, ωA,II = 1− c2
c1 + c2

. (8)

We collect all aggregation information using a merging
map. All other nodes m ∈ Vpred that were not mapped to
any other node k ∈ Vagg are added as new nodes to Gagg.
Similarly, we add edges (m, l) ∈ Epred to Eagg in a slightly
different fashion depending on whether one of the involved
nodes has been already mapped to a node k ∈ Vagg . Finally,
our aggregate() function returns Gagg .

S.6. Extended Results: Successor-LGP

In the following section, we perform additional ablation
studies for our LaneGNN model on the Successor-LGP task.

Algorithm 2: aggregate(Gpred,Gagg)

1 Add weight to each node m ∈ Vpred based on weight equal to path length to starting pose
2 Compute edge angles and mean node angles based on predecessor and successor edge angles for Gpred and Gagg

3 Gagg ← removeUnvalidatedSplitsMerges(Gagg)

4 DL2
agg,pred Compute pair-wise Euclidean distance between Vagg and Vpred.

5 D∠
agg,pred Compute pair-wise mean angle distance between Vagg and Vpred.

6 Bagg,pred ←
(
DL2

agg,pred < λ
)
∧
(
DL2

agg,pred < ψ
)

7 for A ∈ Vpred do
8 LocalAggGraph(A) = EmptyGraph()
9 for k ∈ Vagg do

10 if Bagg,pred(A, k) == 1 then
11 LocalAggGraph(A)← AddAggEdges(k)
12 if LocalAggGraph(A) not empty then
13 (II, I), a← getNearestEdgeAndLatDist(A, LocalAggGraph(A))
14 I, II← getNearestNodes(m,LocalAggGraph(A), (II, I))
15 if a < athresh then
16 Compute I∗ and II∗ as detailed in Eq. 6 and Eq. 7
17 Gagg ← UpdateAggGraph(I∗, II∗)

18 for m ∈ Vpred if m unmapped to Gagg do
19 Gagg ← AddUnmappedNode(Gagg,m)
20 for (m, l) ∈ Epred do
21 if m not mapped to Gagg ∧ l not mapped to Gagg then
22 Gagg ← AddUnconstrainedEdge(Gagg, (m, l)))
23 if m mapped to Gagg ∧ l not mapped to Gagg then
24 Gagg ← AddLeadingEdge(Gagg, (m, l)))
25 if m not mapped to Gagg ∧ l mapped to Gagg then
26 Gagg ← AddTrailingEdge(Gagg, (m, l)))

27 return Gagg

S.6.1. Quantitative Results

S.6.1.1 Additional LaneGNN Ablation

In addition to our observation regarding low sensitivity to
minor parameter variations (see Sec. S.4.3), we present a
parameter study in Tab. S.3 for the LaneGNN architecture as
well as the training parameters. The model is trained using
both 200 as well as 400 node samples, which is a hyper-
parameter that is chosen in the preprocessing stage. Note that
the effective number of nodes covering the drivable corridor
can be much lower in reality due to ego lane segmentation
masking. We observe significantly higher recalls while the
precision is roughly the same when increasing from 200
to 400 nodes. The remaining metrics, however, indicate a
more drastic performance difference with plummeting values
across APLS, SDA20, SDA50 and GraphIoU for fewer
nodes.

In addition to the number of nodes, we show that the inclu-
sion of the node loss term improves recall significantly while
also showing higher values across all other metrics. The
node regression outputs Sv are not used during graph traver-
sal but still induce significant performance improvements as
they guide the network towards reasonable corridors. The
batch size shows the best performance for a value of 2 or 4

depending on the evaluated metric while batch size 1 pro-
duces drastically worse outputs. In addition to the batch size,
we have observed that a number of 6 to 8 message passing
steps produces high precision as well as high recall. A GNN
depth of 0 essentially renders the network a classic edge clas-
sifier without leveraging the graph structure, which results
in drastically reduced performance. Our experiments show
that the produced output graph is often not even traversable
(using our pruning approach) under that limitation.

Lastly, we train three different GNN architectures: a
small-, medium- and, large-size LaneGNN. Our findings sup-
port our chosen network architecture presented in the main
paper and underpin that a larger network does not necessarily
perform better given the test sets across all 4 cities. Overall,
we observe that the parameter set used in the main paper
(underlined values) yields maximum performance across the
metrics evaluated.

S.6.1.2 City-wise Test Set Results

In the following, we evaluate the used LaneGNN architec-
ture for different training sets as well as different splits of the
test set each consisting of different combinations of cities.
For each respective city-split, we show the performance of

Table S.3. Additional ablations of the LaneGNN modelM, measured across the test sets of all 4 cities combined. Underlined parameter values denote
our presented approach used in the main paper, whereas bold values represent respective best values for each distinct ablation. The tuples under feature
dimensions represent the main LaneGNN architecture dimensions (map feat dim, node dim, edge dim, msg dim, edge geo dim), please
see Table S.1.

Parameter TOPO P/R ↑ GEO P/R ↑ APLS ↑ SDA20 ↑ SDA50 ↑ Graph IoU ↑

Number of Nodes 200 0.622/0.561 0.622/0.560 0.077 0.094 0.162 0.172
400 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

Node Loss Term ✗ 0.502/0.702 0.501/0.699 0.144 0.149 0.288 0.335
✓ 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

Batch Size
1 0.421/0.557 0.421/0.560 0.170 0.110 0.222 0.296
2 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
4 0.581/0.701 0.579/0.696 0.162 0.220 0.387 0.349

GNN Depth

0 0.163/0.168 0.163/0.166 0.057 0.017 0.051 0.098
2 0.517/0.688 0.517/0.684 0.144 0.152 0.310 0.331
4 0.526/0.684 0.525/0.680 0.145 0.162 0.320 0.330
6 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
8 0.570/0.710 0.568/0.704 0.163 0.195 0.350 0.349

Feature Dimensions
(16, 8, 16, 16, 8) 0.599/0.655 0.598/0.650 0.114 0.072 0.178 0.234

(64, 16, 32, 32, 16) 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
(128, 32, 48, 48, 16) 0.616/0.695 0.613/0.688 0.162 0.180 0.310 0.332

Table S.4. Additional ablations of the LaneGNN modelM for the Successor-LGP task trained on respective cities as detailed and evaluated on various
combinations of city-respective test sets. PAO, ATX, MIA, and PIT represent the cities of Palo Alto, Austin, Miami, and Pittsburgh, respectively. Bold entries
denote the maximum value for the given evaluation set under different training sets. Underlined values denote the numbers presented in the main paper.

Train Set Eval Set TOPO P/R ↑ GEO P/R ↑ APLS ↑ SDA20 ↑ SDA50 ↑ Graph IoU ↑

PAO ATX MIA PIT PAO ATX MIA PIT

✓ ✓ 0.584/0.744 0.582/0.739 0.177 0.220 0.367 0.378
✓ ✓ ✓ ✓ ✓ 0.666/0.702 0.663/0.696 0.206 0.199 0.337 0.366

✓ ✓ 0.468/0.726 0.468/0.727 0.123 0.227 0.304 0.327
✓ ✓ ✓ ✓ ✓ 0.579/0.660 0.578/0.660 0.194 0.206 0.361 0.301

✓ ✓ 0.534/0.687 0.532/0.683 0.145 0.217 0.354 0.330
✓ ✓ ✓ ✓ ✓ 0.643/0.672 0.638/0.666 0.193 0.198 0.371 0.315

✓ ✓ 0.530/0.722 0.532/0.714 0.143 0.151 0.307 0.336
✓ ✓ ✓ ✓ ✓ 0.667/0.674 0.667/0.665 0.191 0.115 0.243 0.333

✓ ✓ ✓ ✓ ✓ 0.603/0.675 0.601/0.670 0.203 0.206 0.376 0.339
✓ ✓ ✓ ✓ ✓ 0.549/0.686 0.548/0.681 0.200 0.185 0.338 0.338

✓ ✓ ✓ ✓ ✓ 0.578/0.663 0.577/0.658 0.202 0.174 0.348 0.330
✓ ✓ ✓ ✓ ✓ 0.577/0.643 0.574/0.635 0.171 0.073 0.179 0.281

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

a LaneGNN instance trained on either only the respective
city or on all cities (see Tab. S.4, upper half). In general,
we observe that the specifically trained models do not nec-
essarily perform better on the test-sets of their respective
cities. In comparison, the LaneGNN model trained on all
cities consistently produces higher precision while showing
comparably small reductions in recall. This allows us to state
that larger training sets across all cities do not necessarily
harm the performance on specific cities when evaluating.

In addition to these findings, we also evaluate different
LaneGNN instances trained on city-wise training sets and
measure their performance across all cities combined. We
observe no major performance drops when testing a city-

specific model on all cities except for the model trained
on Pittsburgh (see Tab. S.4, lower half). This essentially
means that we can use a model trained on one city and
still perform reasonably well in other cities. Nonetheless,
the model trained on all cities still shows the average best
performance across all cities.

S.6.2. Qualitative Results

In Fig. S.9, we visualize the success and failure cases of
our LaneGNN model for the Successor-LGP task. Challeng-
ing scenes typically entail complex topological structures,
such as roundabouts, multi-lane streets, and high-contrast
illumination scenarios. In the depicted high-contrast scene,

(a) Region 1, naive aggregation (b) Region 1, our aggregation

(c) Region 2, naive aggregation (d) Region 2, our aggregation

Figure S.10. Visualizations of the naive and our aggregation scheme for two large-scale areas within the testing region of the city of Miami.

the lane turning right is not detected, leading to a missing
branch in the predicted lane graph. The roundabout de-
picted in the bottom center leads to a topologically correct
predicted successor graph, but the predicted waypoints of
the left-turning lane do not align with the position of the
roundabout center. Finally, in the bottom right scene, an
additional left-turning lane going in the opposite direction is
predicted by our LaneGNN model. Our aggregation scheme
can remove these false-positive graph branches if they are
not consistently predicted for multiple successive LaneGNN
forward passes.

S.7. Extended Results: Full-LGP
In order to generate the test-set results provided in

the main paper, we initialized our drive(pinit) func-
tion (Algo. 1) starting at the predicted lane start points as
provided by the yaw-segmentation output of LaneExtrac-
tion [15]. This results in 178 initial poses parametrized by
pi = (xi, yi, γi) used for parallel execution of drive()
as described in Algo. 1. Our numbers provided in the main
paper are generated using the parameters detailed below.

We make use of thresholding Sego
lane at a value of 0.15,

which produces relatively high recalls and thus more con-

Table S.5. Additional ablations of the aggregation scheme used in the Full-
LGP task. We compare the presented naı̈ve and full aggregation scheme
with the reduced variants of the full pipeline (no smoothing of Gpred, no
removal of invalidated splits and merges, and a smaller lateral aggregation
threshold).

Model APLS ↑ TOPO P/R ↑ GEO P/R ↑ Graph IoU ↑

w/o smoothing 0.105 0.452/0.671 0.631/0.726 0.377
w/o remove s/m 0.102 0.480/0.658 0.634/0.698 0.366

athresh = 10 0.108 0.458/0.677 0.581/0.738 0.354

Naı̈ve 0.101 0.366/0.654 0.523/0.727 0.376
Ours 0.103 0.481/0.670 0.649/0.689 0.384

nections at intersections. This is complemented by only
considering edges with an edge score of 0.5 or higher for
graph traversal. For aggregation, we use a radius and dis-
tance threshold of 80 px and 0.5 radians to filter close nodes
and edges of Gagg for constructing LocalAggGraph(A) in-
stances to speed up the aggregation process. For the actual
merging of nodes (Eq. 6 and Eq. 7), we choose a lateral dis-
tance athresh = 20 that is used for aggregate() within
one drive() instance as well as aggregation of multiple
drive() outputs (see Algo. 2). Regarding the drive()
function, the maximum overall number of steps is 36 over a

Figure S.11. Illustrative path planning experiment results. We visualize the ground-truth graph in thin green and the path planned on the ground-truth graph in
bold green. We employ the same visualization scheme for the graph from LaneExtraction, and our aggregation scheme.

maximum of 4 branches with a maximum branch-age of 12
each. As described before we smooth the predicted graphs
and also remove splits and merges.

In addition, we present results on three additional param-
eter settings for the Full-LGP task in Tab. S.5. We observe
slight performance decreases in precision while the recall
is similar or higher when not smoothing predicted graphs.
Without removing unvalidated splits and merges, our perfor-
mance shows slight decreases for GraphIoU, GEO precision,
and TOPO P/R. Finally, we lower athresh to 10, which in-
creases recall but lowers precision, specifically the GEO
metric, while the Graph IoU also drops by three percent.
As in the main paper, we also list our naı̈ve aggregation
scheme for comparison. The results are further illustrated in
Fig. S.10.

S.8. Extended Results: Planning

As described in the main manuscript, we evaluate the qual-
ity of the generated lane graph on a planning task. Fig S.11
illustrates exemplary planned paths obtained on the graphs
from the ground-truth annotations, LaneExtraction, and our
aggregation scheme, respectively. We observe that for most
scenarios, the planned paths from our aggregation scheme
closely match the paths planned on the ground-truth graph.
Even for long routes with multiple turns, we report a close
match between our path and the ground-truth path. We
notice some inaccuracies in our planned path where the tra-

jectory deviates from the correct lane and contains slightly
misaligned path waypoint positions.

While some of the paths from LaneExtraction show en-
couraging results, we observe that for many routes, no close
match between the LaneExtraction path and the ground-truth
path can be observed, also mirrored in the quantitative eval-
uation of the planning task in the main manuscript. We
hypothesize that the LaneExtraction graphs are not always
complete and have missing links for occluded or topolog-
ically complex regions, resulting in the nonexistence of a
path through the graph from start to goal nodes.

