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A. Additional results
A.1. Cross-Dataset Transfer

Following [7], we measure how well the soft prompts
learned on ImageNet perform when evaluated on different
datasets. In this setting, the training is performed on images
from all 1,000 classes, using 16 images for each class. As
the results from Table 1 show, our approach surpasses CoOp
by 2.5% while outperforming the more computationally de-
manding CoCoOp (0.8% better on average).

A.2. Domain generalization

Following the encouraging results reported in [7, 8]
on domain generalization, herein we attempt to evaluate
whether our approach can improve the quality of the leaned
prompts under domain shift too. To this end, we trained
LASP on all classes from ImageNet (16-shot setting) and
evaluate the learned prompts on 5 datasets with class names
compatible with those of ImageNet, but different data dis-
tribution. Following [8], we used ImageNet [1] as the
source dataset, and ImageNetV2 [5], ImageNet-Sketech [6],
ImageNet-A [2] and ImageNet-R [3] as the test datasets.

As the results from Table 2 show, with the exception
of ImageNet-V2, our approach outperforms all prior work,
showing strong domain generalization capabilities.

A.3. Effect of LN fine-tuning on CoOp

Herein, we analyze the effect of fine-tuning the LN lay-
ers of the vision encoder directly on top of our baseline, i.e.
CoOp. As the results from Table 3 show, the improvements,
especially on the new classes, are small. This shows that LN
fine-tuning alone is not enough for obtaining high accuracy.

A.4. Combining CLIP with CoOp

To further show the effectiveness of our approach, we
compare it with an ensemble formed by combining CLIP
and CoOp. Following CLIP [4], the ensemble is formed by
taking the average over the logits produced by CoOp us-
ing the learned prompts and, respectively, by CLIP using
the hand-crafted templates. Perhaps unsurprisingly, the en-
semble outperforms CoOp on the new classes and is out-

performed on the base ones. LASP largely outperforms all
these variants showcasing the importance of the proposed
formulation.

A.5. Training and inference speed considerations.

Once trained, LASP is as fast as CoOp. For training,
LASP, CoOp and CoCoOp differ only in the text encoder
whose cost is G·M ·CT , M ·CT and B·M ·CT , respectively,
where B is the batch size, M is the number of classes and
CT is the text encoder’s cost for 1 sample. In practice, for
B = 32, LASP is, on average, 2.3x slower than CoOp and
up to 10x faster than CoCoOp. Note that these numbers
are subject to the implementation optimizations made for
each method. For G=1, LASP’s training cost is the same as
CoOp’s while losing only 0.5% on average.

A.6. Generalized zero-shot results

As mentioned in the main paper, the current evaluation
protocol used in [7, 8] computes the accuracy considering
the base and new classes in isolation. A more realistic eval-
uation protocol should consider the classes across both sub-
sets (i.e. base and novel) jointly. We report results using this
setting in Table 5. To ground the results, as no pretrained
models where available, we retrain CoCoOp using the of-
ficial code released by the authors. As it can be observed,
the same conclusions, previously made using the protocol
proposed in [8] hold true.

B. Implementation details
Hand-engineered prompts set ζ: Unless otherwise

specified, we used the following set of hand-engineered
templates (borrowed from CLIP and CoOp):

"a photo of a {}, a type of flower.",
"a photo of a person doing {}.",
"a centered satellite photo of {}.",
"a photo of a {}, a type of aircraft.",
"{} texture.",
"itap of a {}.",
"a bad photo of the {}.",
"a origami {}.",
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Table 1. Comparison with state-of-the-art for the cross-dataset transfer setting.
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CoOp 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
LASP 71.30 94.50 89.36 66.20 71.74 86.40 23.03 67.0 45.54 48.50 68.24 66.52

Table 2. Comparison with state-of-the-art for the domain generalization setting.

Source Target

Learnable? ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R

CLIP 66.73 60.83 46.15 47.77 73.96
CoOp ✓ 71.51 64.20 47.99 49.71 75.21
CoCoOp ✓ 71.02 64.07 48.75 50.63 76.18
LASP ✓ 71.10 63.96 49.01 50.70 77.07

Table 3. Effect of LN fine-tuning on CoOp. The results reported
represent the average accuracy over the 11 datasets.

Method Base New H

Baseline (CoOp) 82.69 63.22 71.66
CoOp + LN 82.80 65.17 72.94

Table 4. Comparison between LASP and an ensemble formed
by CLIP and CoOp. The results reported represent the average
accuracy over the 11 datasets.

Method Base New H

Baseline (CoOp) 82.69 63.22 71.66
CoOp + CLIP 78.50 70.1 74.06
LASP 82.7 74.9 78.61
LASP-V 83.18 76.11 79.48

"a photo of the large {}.",
"a {} in a video game.",
"art of the {}.",
"a photo of the small {}.",
"a photo of a {}.",
"a photo of many {}.",
"a photo of the hard to see {}.",
"a low resolution photo of the {}.",
"a rendering of a {}.",
"a bad photo of the {}.",
"a cropped photo of the {}.",
"a pixelated photo of the {}.",

"a bright photo of the {}.",
"a cropped photo of a {}.",
"a photo of the {}.",
"a good photo of the {}.",
"a rendering of the {}.",
"a close-up photo of the {}.",
"a low resolution photo of a {}.",
"a rendition of the {}.",
"a photo of the clean {}.",
"a photo of a large {}.",
"a blurry photo of a {}.",
"a pixelated photo of a {}.",
"itap of the {}.",
"a jpeg corrupted photo of the {}.",
"a good photo of a {}."

Note that {} represent the placeholder for the location of
the class name w.

Random prompts: For the experiments involving ran-
dom prompts, we list bellow a few such examples:

"Ports, waterways, the subfield that
{}.",
"In TCP, prepared mind, but some
others, Milatiai, appear to have {}.",
"Iron Age, The Eastern Shore of
Virginia residents age 5 and {}.",
"Cat mostly all with {}.",
"Wind erosion. go unnoticed|it was
{}.",
"River Delta, on six different {}.",
"12 hours. few times every million



Table 5. Comparison with the state-of-the-art for the generalized zero-shot setting. We have re-trained CoCoOp using the officially
released code.

(a) Average over 11 datasets.

Base New H

CoCoOp 72.46 64.77 68.39
LASP 76.59 67.55 71.78
LASP-V 77.23 68.52 72.61

(b) ImageNet.

Base New H

CoCoOp 71.9 67.5 69.63
LASP 72.0 67.33 69.51
LASP-V 71.9 68.0 69.78

(c) Caltech101.

Base New H

CoCoOp 95.20 90.67 92.87
LASP 94.87 92.20 93.51
LASP-V 95.54 92.78 94.13

(d) OxfordPets.

Base New H

CoCoOp 91.01 93.10 92.04
LASP 91.53 92.87 92.19
LASP-V 92.23 93.17 92.69

(e) StanfordCars.

Base New H

CoCoOp 67.26 69.43 68.33
LASP 72.27 68.73 70.45
LASP-V 71.0 68.50 69.27

(f) Flowers102.

Base New H

CoCoOp 86.73 64.63 74.06
LASP 90.97 68.80 78.34
LASP-V 92.20 69.93 79.53

(g) Food101.

Base New H

CoCoOp 85.73 85.50 85.61
LASP 87.53 87.17 87.34
LASP-V 87.73 87.17 87.45

(h) FGVCAircraft.

Base New H

CoCoOp 24.50 25.93 25.19
LASP 24.33 27.03 25.61
LASP-V 28.77 27.80 28.27

(i) SUN397.

Base New H

CoCoOp 71.13 67.76 69.40
LASP 72.60 67.21 69.80
LASP-V 72.55 69.11 70.79

(j) DTD.

Base New H

CoCoOp 59.33 42.70 49.65
LASP 67.53 46.93 55.37
LASP-V 65.67 49.90 56.71

(k) EuroSAT.

Base New H

CoCoOp 69.20 39.23 50.14
LASP 89.38 54.87 67.99
LASP-V 90.80 56.80 69.88

(l) UCF101.

Base New H

CoCoOp 75.16 66.10 70.34
LASP 79.57 70.0 74.47
LASP-V 81.20 70.60 75.52

{}.",
etc.

Additional class names for in-domain ablation: Be-
low, we list the manually defined in-domain class name dis-
tractors used to produce the results for with in-domain dis-
tractors. For Food-101, we added the following classes:

[’aroma’, ’bagel’, ’batter’, ’beans’, ’biscuit’, ’broth’,
’burger’, ’burrito’, ’butter’, ’candy’, ’caramel’, ’caviar’,
’cheese’, ’chili’, ’chimichanga’, ’cider’, ’cocoa’, ’cof-
fee’, ’cobbler’, ’empanada’, ’fish’, ’flour’, ’ketchup’, ’mar-
garine’, ’mousse’, ’muffin’, ’mushrooms’, ’noodle’, ’nuts’,
’oil’, ’olives’, ’pudding’, ’raclette’, ’rice’, ’salad’, ’salsa’,
’sandwitch’, ’soda’, ’tea’, ’stew’, ’toast’, ’waffles’, ’yo-
gurt’, ’wine’, ’sopapillas’, ’chilli con carne’, ’banana
bread’, ’yorkshire pudding’, ’spaghetti carbonara’, ’roast
potatoes’, ’sausage ragu’, ’avocado panzanella’, ’lamb
biryani’]

Respectively, for Flowers102 dataset:
[’Agapanthus’, ’Allium’, ’Alstroemerias’, ’Amaran-

thus’, ’Astilbe’, ’Begonia’, ’brunia’, ’California poppy’,
’Calla lily’, ’Campanula’, ’Carnations’, ’Celosia’,
’Chrysanthemum’, ’Cornflower’, ’Delphinium’, ’Di-
anthus’, ’Dusty Miller’, ’Eryngium’, ’Freesia’, ’Gar-
denias’, ’Gerbera daisies’, ’Gladiolus’, ’Gypsophila’,

’Hydrangea’, ’Hypericum’, ’Kale’, ’Larkspur’, ’Liatris’,
’Lilies’, ’Lisianthus’, ’Orchids’, ’Peony’, ’Periwinkle’,
’Ranunculus’, ’Scabiosa’, ’Sunflowers’, ’Yarrow’, ’Zinnia’,
’Bellflower’, ’Bleeding Heart’, ’Browallia’, ’Bugle-
weed’, ’Butterfly Weed’, ’Calendula’, ’Cardinal Flower’,
’Celosia’, ’Clary Sage’, ’Coreopsis’, ’Forget-Me-Not’,
’Freesias’, ’Gaillardia’, ’Glory of the Snow’, ’Heather’,
’Hollyhock’, ’Hyssop’, ’Impatiens’, ’Jack-in-the-Pulpit’,
’Lilac’, ’Lilies’, ’Lobelia’, ’Periwinkle’, ’Rue’, ’Thunber-
gia’, ’Verbena’, ’Wisteria’]
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