
Appendix for Introducing Competition to Boost the Transferability of
Targeted Adversarial Examples through Clean Feature Mixup

Algorithm 1 CFM-RDI-MI-TI

Input: A classifier f ; a clean example x; a target label yt.
Input: Adversary’s objective L; the maximum iterations
T ; ℓ∞ perturbation bounds ϵ; step size η; decay factor µ;
Gaussian kernel W for TI.
Input: mixing probabilty p; upper bounds for mixing
ratios αmax for CFM modules.
Output: An adversarial example xadv

1: f ′ = AttachCFM(f ; p, αmax) ▷ Attach CFM
modules to conv and fc layers

2: Store clean features into CFM modules via f ′(x)
3: g1 = 0; xadv

1 = x
4: for t = 1 → T − 1 do
5: Compute the gradients with RDI input transforms

via f ′

ĝt+1 = ▽xadv
t

L(f ′(RDI(xadv
t )), yt) (1)

6: g̃t+1 = µ · gt +
ĝt+1

∥ĝt+1∥1
▷ Apply MI

7: gt+1 = W ∗ g̃t+1 ▷ Apply TI
8: xadv

t+1 = xadv
t − η · sign(gt+1) ▷ Apply FGSM

9: xadv
t+1 = Clipϵx(x

adv
t+1)

10: end for
11: xadv = xadv

T

12: return xadv

A. Algorithm
The CFM method is compatible with many existing at-

tack methods, and as an example, the pseudo-codes of the
CFM-RDI-MI-TI method are described in Algorithm 1.

B. References to Pre-trained Models
B.1. Pre-trained Models on the ImageNet Dataset

We used a total of 16 models, and the sources of the pre-
trained weights of the models are as follows.

The weights for the following six models are down-
loaded from TorchVision library1: VGG-16 [14], ResNet-
18 (RN-18) [6], ResNet-50 (RN-50) [6], DenseNet-121

1https://github.com/pytorch/vision

(DN-121) [8], MobileNet-v2 (MB-v2) [13], Inception-v3
(Inc-v3) [17].

The weights for the following nine models are down-
loaded from Pytorch Image Models (timm) library [20]:
Xception (Xcep) [1], EfficientNet-B0 (EF-B0) [18], Incep-
tion ResNet-v2 (IR-v2) [16], Inception-v4 (Inc-v4) [16],
Vision Transformer (ViT) [3], LeViT [5], ConViT [4],
Twins [2], and Pooling-based Vision Transformer (PiT) [7].
The pre-trained weights for the adversarially trained RN-
50 (adv-RN-50) [21] is provided by the official repository
of [12].

The adv-RN-50 is adversarially trained on small ℓ2-
norm-constrained adversarial examples (||δ||2 ≤ 0.1),
which is recently demonstrated to be effective in boosting
the transfer success rate when used as a source model [15].

B.2. Pre-trained Models on the CIFAR-10 Dataset

The pre-trained weights for the following six models
are provided by [11]: VGG-16 [14], ResNet-18 (RN-18)
[6], ResNet-50 (RN-50) [6], DenseNet-121 (DN-121) [8],
MobileNet-v2 (MB-v2) [13], and Inception-v3 (Inc-v3)
[17].

We used four ensemble models composed of three
ResNet-20 [6] networks (ens3-RN-20). They are trained
under four defensive settings: standard training, ADP [10],
GAL [9], and DVERGE [22]. The pre-trained weights for
the four ensemble models are provided by [22].

C. Additional Experimental Results

C.1. Visualization of Generated Adversarial Exam-
ples

Figure 1, 2, 3, 4, 5 and 6 visualize the generated ad-
versarial examples for qualitative comparison. We denoted
the true and target classes below the clean images and com-
puted the average attack success rates over the ten carefully
selected pre-trained target models listed in Table 4. Note
that all adversarial perturbations are constrained by the ℓ∞-
norm (i.e., ||δ||∞ ≤ ϵ where we used ϵ = 16/255).

1

https://github.com/pytorch/vision


C.2. Extended Experimental Results With Addi-
tional Source Models and Baselines

Table 1 and Table 2 show the extended experimental re-
sults on the ImageNet-Compatible dataset with additional
source models, i.e., adv-RN-50 and DN-121 in Table 1 and
RN-50 and DN-121 in Table 2. For the additional source
models, we used the same hyperparameters of CFM as in
RN-50 (i.e., αmax = 0.75 and p = 0.1). We also included
the results of Admix with the number of scale copies of 5
(i.e., m1 = 5 in [19]) and SI-CFM-RDI for more compre-
hensive comparisons. The Admixm1=5 follows the original
setting of the Admix [19], which utilizes the SI technique
in its internal loops.

C.3. Extended Experimental Results on the CIFAR-
10 dataset

Table 3 shows the extended experimental results on the
CIFAR-10 dataset, which additionally include the results of
Admixm1=5 and SI-CFM-RDI with different source mod-
els (Inc-v3, VGG-16, and DN-121) for more comprehensive
comparisons.

C.4. Experimental Results of Combined Attacks
With Multiple Techniques

Table 4 shows the experimental results of various com-
binations of multiple attack techniques. The results demon-
strate that CFM is compatible with existing attack methods,
and various combinations with CFM can further improve
the transferability of adversarial examples.

C.5. Experimental Results with Different Mixing
Hyperparameters

Table 4 shows the experimental results on how the trans-
fer success rates vary by changing the values of the mixing
probability p and the upper bound of mixing ratios αmax.
In this experiment, we used adv-RN-50 as the source model
and evaluated the transfer success rates on the carefully se-
lected ten target models. CFM achieves the highest success
rate when p = 0.1 and αmax = 0.75, but it also achieves
comparable attack success rates at other values. This indi-
cates that CFM is not very sensitive to the changes in hy-
perparameters and can achieve consistent performance im-
provement.

References
[1] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1251–1258, 2017. 1

[2] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision

transformers. Advances in Neural Information Processing
Systems, 34, 2021. 1

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1
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Figure 1. Visualization of generated adversarial examples. The source model is RN-50. Each average targeted attack success rate was
calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.
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Figure 2. Visualization of generated adversarial examples. The source model is RN-50. Each average targeted attack success rate was
calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.
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Figure 3. Visualization of generated adversarial examples. The source model is adv-RN-50. Each average targeted attack success rate
was calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.
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Figure 4. Visualization of generated adversarial examples. The source model is adv-RN-50. Each average targeted attack success rate
was calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.
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True class: loggerhead sea turtle
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Figure 5. Visualization of generated adversarial examples. The source model is Inc-v3. Each average targeted attack success rate was
calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.



True class: police van
 Target class: confectionery store

Clean image

Average Targeted Attack
 Success rate: 10.00%

DI

Average Targeted Attack
 Success rate: 40.00%

RDI

Average Targeted Attack
 Success rate: 40.00%

Admix-RDI

Average Targeted Attack
 Success rate: 50.00%

SI-RDI

Average Targeted Attack
 Success rate: 40.00%

VT-RDI

Average Targeted Attack
 Success rate: 40.00%

ODI

Average Targeted Attack
 Success rate: 70.00%

CFM-RDI

True class: police van
 Target class: cup

Clean image

Average Targeted Attack
 Success rate: 0.00%

DI

Average Targeted Attack
 Success rate: 0.00%

RDI

Average Targeted Attack
 Success rate: 0.00%

Admix-RDI

Average Targeted Attack
 Success rate: 0.00%

SI-RDI

Average Targeted Attack
 Success rate: 0.00%

VT-RDI

Average Targeted Attack
 Success rate: 10.00%

ODI

Average Targeted Attack
 Success rate: 30.00%

CFM-RDI

Figure 6. Visualization of generated adversarial examples. The source model is Inc-v3. Each average targeted attack success rate was
calculated over the ten carefully selected target models, which are more difficult to confuse. For example, an average targeted attack
success rate of 50% means that 5 out of 10 target models recognize the adversarial example as the target class.
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Source :
RN-50 Target model

Attack VGG-16 RN-18 RN-50 DN-121 Xcep MB-v2 EF-B0 IR-v2 Inc-v3 Inc-v4 Avg.

DI 62.5 56.6 98.9 72.3 5.7 28.2 29.3 4.5 9.2 9.9 37.7
RDI 65.4 71.8 98.0 81.3 13.1 46.6 46.6 16.8 30.7 23.9 49.4
Admixm1=1-RDI 74.2 80.7 98.7 86.8 20.9 59.4 56.1 26.7 42.7 34.1 58.0
Admixm1=5-RDI 75.2 83.0 98.4 89.6 36.5 64.7 66.4 44.7 62.5 50.5 67.2
SI-RDI 70.5 79.8 98.8 88.9 29.5 56.2 66.2 37.9 56.4 43.6 62.8
VT-RDI 68.8 78.7 98.2 82.5 27.9 54.5 56.1 32.8 45.8 37.9 58.3
ODI 78.3 77.1 97.6 87.0 43.8 67.3 70.0 49.5 65.9 55.4 69.2
CFM-RDI 84.7 88.4 98.4 90.3 51.1 81.5 78.8 48.0 65.5 59.3 74.6
SI-CFM-RDI 85.9 88.5 98.4 92.3 62.5 81.6 82.7 61.5 74.5 69.7 79.8

Source :
adv-RN-50 Target model

Attack VGG-16 RN-18 RN-50 DN-121 Xcep MB-v2 EF-B0 IR-v2 Inc-v3 Inc-v4 Avg.

DI 65.3 81.5 91.5 87.0 32.6 62.5 68.8 36.9 55.3 42.2 62.4
RDI 59.7 83.5 90.7 85.9 39.7 67.0 68.8 44.2 62.4 45.1 64.7
Admixm1=1-RDI 62.7 83.0 90.3 86.6 46.9 71.8 72.4 48.8 66.3 53.0 68.2
Admixm1=5-RDI 54.4 81.0 86.0 81.8 48.8 68.0 68.5 50.7 68.3 52.9 66.0
SI-RDI 53.9 79.4 87.1 83.8 46.6 66.5 69.5 52.0 69.1 52.2 66.0
VT-RDI 54.0 76.8 84.7 81.2 38.5 60.3 58.7 42.7 56.1 44.9 59.8
ODI 62.0 77.6 84.3 85.0 56.3 66.9 73.0 61.1 71.9 60.0 69.8
CFM-RDI 76.7 86.3 90.9 87.6 67.1 82.4 83.4 64.7 77.1 67.4 78.4
SI-CFM-RDI 70.0 82.3 86.8 85.7 63.4 79.2 79.4 61.8 76.2 63.9 74.9

Source :
Inc-v3 Target model

Attack VGG-16 RN-18 RN-50 DN-121 Xcep MB-v2 EF-B0 IR-v2 Inc-v3 Inc-v4 Avg.

DI 2.9 2.4 3.4 5.0 1.9 1.8 3.7 3.0 99.2 4.2 12.8
RDI 3.5 3.8 4.0 7.0 3.1 3.0 5.9 6.3 98.7 7.1 14.2
Admixm1=1-RDI 6.3 6.5 8.8 12.8 6.0 6.1 10.9 12.2 98.7 13.6 18.2
Admixm1=5-RDI 4.4 9.0 8.3 13.3 8.2 6.5 12.0 14.8 98.5 16.3 19.1
SI-RDI 4.0 5.2 5.7 11.0 6.3 4.6 8.2 11.6 98.8 12.1 16.8
VT-RDI 5.9 8.9 9.4 13.2 7.4 5.9 9.8 12.3 98.7 14.7 18.6
ODI 14.3 14.9 16.7 32.3 20.3 13.7 25.3 26.4 95.6 31.6 29.1
CFM-RDI 22.9 26.8 26.2 39.1 34.1 27.1 38.6 36.2 95.9 44.8 39.2
SI-CFM-RDI 24.4 36.3 32.3 51.1 44.8 30.9 45.7 52.0 97.5 55.4 47.0

Source :
DN-121 Target model

Attack VGG-16 RN-18 RN-50 DN-121 Xcep MB-v2 EF-B0 IR-v2 Inc-v3 Inc-v4 Avg.

DI 37.4 28.7 44.4 98.7 5.2 13.1 18.7 4.3 7.1 8.3 26.6
RDI 42.1 48.8 55.7 98.5 10.1 21.0 29.0 12.8 20.8 18.8 35.8
Admixm1=1-RDI 53.2 60.7 67.6 98.3 17.8 31.5 39.4 20.1 31.1 26.5 44.6
Admixm1=5-RDI 49.6 60.4 65.3 98.6 21.6 34.8 43.5 28.9 41.0 34.3 47.8
SI-RDI 45.4 53.0 60.1 98.6 16.1 27.8 37.3 22.0 34.3 25.8 42.0
VT-RDI 47.7 56.7 62.1 98.6 20.3 28.7 36.9 25.4 31.5 27.2 43.5
ODI 64.2 64.2 71.7 98.0 31.4 45.9 56.1 39.8 52.8 45.9 57.0
CFM-RDI 76.2 79.0 83.9 97.8 41.1 62.5 68.6 43.6 56.1 53.8 66.3
SI-CFM-RDI 77.2 81.2 85.4 97.8 49.7 67.8 74.8 53.8 67.9 59.7 71.5

Table 1. Extended experimental results on targeted attack success rates (%) against the ten target models on the ImageNet-Compatible
dataset.



Source :
RN-50 Target model

Attack
adv-

RN-50 ViT LeViT ConViT Twins PiT Avg.
Computation time

per image (sec)

DI 10.9 0.1 3.6 0.3 1.3 1.5 2.9 3.73
RDI 34.8 0.7 13.1 1.9 5.9 6.8 10.5 3.29
Admixm1=1-RDI 52.4 1.3 22.5 2.5 8.5 8.4 15.9 9.73
Admixm1=5-RDI 68.6 4.0 36.3 7.7 18.7 20.0 25.9 49.19
SI-RDI 59.9 2.9 29.4 6.3 15.5 17.9 22.0 16.16
VT-RDI 64.2 2.9 28.1 5.2 15.0 14.0 21.6 19.83
ODI 64.7 5.1 37.0 10.7 20.1 29.1 27.8 9.05
CFM-RDI 75.5 4.3 46.1 8.9 25.2 24.7 30.8 3.72
SI-CFM-RDI 80.8 12.4 60.1 16.7 39.7 43.3 42.2 18.34

Source :
adv-RN-50 Target model

Attack
adv-

RN-50 ViT LeViT ConViT Twins PiT Avg.
Computation time

per image (sec)

DI 98.9 5.7 36.9 10.1 19.2 20.5 31.9 3.77
RDI 98.8 10.8 49.5 19.9 29.4 35.8 40.7 3.29
Admixm1=1-RDI 98.9 12.1 55.5 23.1 32.4 38.9 43.5 9.86
Admixm1=5-RDI 98.4 19.7 56.4 34.1 36.2 49.4 49.0 49.19
SI-RDI 98.7 19.4 57.6 35.3 35.2 52.1 49.7 16.34
VT-RDI 98.5 10.6 46.3 20.0 27.1 34.4 39.5 19.83
ODI 97.3 22.2 57.7 38.8 40.0 54.9 51.8 9.04
CFM-RDI 98.3 29.5 69.8 41.8 52.7 59.8 58.6 3.74
SI-CFM-RDI 98.2 33.1 68.9 46.6 52.2 61.9 60.1 18.47

Source :
Inc-v3 Target model

Attack
adv-

RN-50 ViT LeViT ConViT Twins PiT Avg.
Computation time

per image (sec)

DI 0.2 0.1 0.3 0.0 0.0 0.1 0.1 2.84
RDI 0.8 0.2 1.8 0.2 0.4 0.7 0.7 2.47
Admixm1=1-RDI 2.0 0.1 4.1 0.6 1.4 1.4 1.6 7.27
Admixm1=5-RDI 5.0 0.8 6.4 1.6 1.6 3.9 3.2 36.30
SI-RDI 2.0 0.3 4.1 0.9 0.7 3.2 1.9 12.23
VT-RDI 3.2 0.4 5.2 0.8 1.6 1.8 2.2 14.74
ODI 6.5 0.8 12.4 1.7 3.5 6.7 5.3 6.74
CFM-RDI 8.6 2.1 21.9 3.2 6.1 11.6 8.9 2.96
SI-CFM-RDI 19.3 6.1 33.7 6.8 12.4 22.5 16.8 14.63

Source :
DN-121 Target model

Attack
adv-

RN-50 ViT LeViT ConViT Twins PiT Avg.
Computation time

per image (sec)

DI 3.2 0.2 3.0 0.4 1.0 1.1 1.5 3.62
RDI 10.1 0.8 8.5 1.3 3.7 4.5 4.8 3.22
Admix-RDI 19.2 1.0 14.7 1.7 6.8 7.4 8.5 9.46
SI-Admix-RDI 26.7 2.4 21.8 3.4 10.5 14.2 13.2 46.61
SI-RDI 19.2 2.0 16.1 2.4 8.2 11.7 9.9 15.65
VT-RDI 26.6 2.2 19.2 3.5 8.3 11.7 11.9 18.87
ODI 35.6 3.3 26.9 7.4 14.7 21.9 18.3 9.06
CFM-RDI 43.2 3.6 32.8 6.4 17.3 21.1 20.7 3.69
SI-CFM-RDI 54.3 8.0 46.5 11.8 28.4 35.5 30.8 18.18

Table 2. Extended experimental results of targeted attack success rates (%) against one adversarially trained model and five Transformer-
based classifiers with the ImageNet-Compatible dataset. We also report the average computation time to construct an adversarial example.



Source :
RN-50 Target model

Attack VGG-16 RN-18 MB-v2 Inc-v3 DN-121 ens3-RN-20 Avg. Computation time
per image (sec)Baseline ADP GAL DVERGE

DI 66.4 71.5 62.7 71.1 84.2 77.9 56.5 14.3 15.6 57.8 0.64
RDI 66.4 70.9 64.1 73.4 82.8 76.3 55.8 13.5 14.9 57.6 0.59
SI-RDI 72.9 76.3 77.1 77.0 84.7 81.2 65.5 20.0 22.4 64.1 3.17
VT-RDI 89.8 87.1 92.6 92.9 93.7 94.4 82.3 24.3 31.3 76.5 3.82
Admixm1=1-RDI 74.2 78.8 76.2 82.7 89.2 85.2 66.4 17.3 18.4 65.4 1.98
Admixm1=5-RDI 79.9 82.3 81.3 83.4 90.0 86.0 69.7 22.8 25.6 69.0 9.06
CFM-RDI 98.3 97.7 99.0 99.0 99.2 98.8 97.2 54.9 59.3 89.3 0.72
SI-CFM-RDI 98.5 98.1 99.2 98.9 99.2 98.8 97.3 61.3 65.8 90.8 5.02

Source :
Inc-v3 Target model

Attack VGG-16 RN-18 MB-v2 Inc-v3 DN-121 ens3-RN-20 Avg. Computation time
per image (sec)Baseline ADP GAL DVERGE

DI 22.8 12.8 32.1 78.7 14.7 32.8 21.7 3.8 3.5 24.8 1.74
RDI 21.3 14.7 33.9 86.7 16.6 37.6 22.3 4.4 5.0 26.9 1.88
SI-RDI 43.1 28.5 51.4 99.8 30.0 60.9 46.5 11.9 9.1 42.4 8.54
VT-RDI 53.7 31.1 72.0 93.3 38.5 69.6 55.7 8.9 9.4 48.0 10.43
Admixm1=1-RDI 29.6 16.9 43.3 90.5 19.9 47.4 30.9 5.3 5.1 32.1 5.60
Admixm1=5-RDI 47.2 32.0 58.1 99.7 34.8 64.0 50.8 14.9 11.2 45.9 30.94
CFM-RDI 45.3 29.1 57.2 94.7 33.9 55.7 42.2 8.8 8.3 41.7 2.02
SI-CFM-RDI 62.3 45.5 67.5 99.5 49.9 71.6 60.9 19.1 15.5 54.6 8.84

Source :
DN-121 Target model

Attack VGG-16 RN-18 MB-v2 Inc-v3 DN-121 ens3-RN-20 Avg. Computation time
per image (sec)Baseline ADP GAL DVERGE

DI 44.3 46.5 39.0 45.6 92.8 41.0 30.9 9.3 9.1 39.8 0.95
RDI 43.3 44.8 37.6 46.0 92.9 38.7 28.1 9.4 9.9 39.0 1.01
SI-RDI 51.3 47.4 48.1 52.6 98.3 46.4 37.5 11.0 11.1 44.9 6.33
VT-RDI 67.9 62.9 67.1 69.2 91.3 61.3 52.6 13.9 16.8 55.9 7.45
Admixm1=1-RDI 50.7 53.9 45.7 52.8 93.1 48.4 37.0 9.9 10.4 44.7 2.86
Admixm1=5-RDI 62.6 58.5 57.9 62.8 98.3 56.4 44.1 14.0 13.8 52.0 14.70
CFM-RDI 97.0 96.5 95.9 97.6 100.0 95.8 91.9 43.4 45.1 84.8 1.28
SI-CFM-RDI 97.3 96.2 97.1 97.7 99.6 96.2 92.6 49.1 52.0 86.4 7.44

Table 3. Targeted attack success rates (%) against nine target models, including four ensemble-based defensive models on the CIFAR-10
dataset. We also evaluated the average computation time for crafting an adversarial example.



Source : RN-50 Target model

Attack Xcep MB-v2 EF-B0 IR-v2 Inc-v4 ViT LeViT ConViT Twins PiT Avg.
Comput. time

per image (sec)

None (-MI-TI) 0.6 2.9 1.6 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.6 3.27
RDI 13.1 46.6 46.6 16.8 23.9 0.7 13.1 1.9 5.9 6.8 17.5 3.29
SI-RDI 29.5 56.2 66.2 37.9 43.6 2.9 29.4 6.3 15.5 17.9 30.5 16.16
VT-RDI 27.9 54.5 56.1 32.8 37.9 2.9 28.1 5.2 15.0 14.0 27.4 19.83
ODI 43.8 67.3 70.0 49.5 55.4 5.1 37.0 10.7 20.1 29.1 38.8 9.05
ODI-RDI 45.8 65.8 69.0 48.2 51.4 6.2 41.9 11.8 22.8 31.9 39.5 9.77
Admixm1=1-RDI 20.9 59.4 56.1 26.7 34.1 1.3 22.5 2.5 8.5 8.4 24.0 9.73
Admixm1=5-RDI 36.5 64.7 66.4 44.7 50.5 4.0 36.3 7.7 18.7 20.0 35.0 49.19
VT-Admixm1=1-RDI 33.5 61.2 58.9 37.5 43.0 4.9 35.0 6.1 16.4 17.9 31.4 58.08
CFM 6.3 35.2 31.9 4.9 9.4 0.0 3.1 0.2 0.8 1.2 9.3 3.35
CFM-RDI 51.1 81.5 78.8 48.0 59.3 4.3 46.1 8.9 25.2 24.7 42.8 3.72
CFM-ODI 55.1 72.5 73.4 55.4 60.7 8.6 48.7 16.7 30.1 39.0 46.0 9.13
SI-CFM-RDI 62.5 81.6 82.7 61.5 69.7 12.4 60.1 16.7 39.7 43.3 53.0 18.34
VT-CFM-RDI 57.3 77.4 74.6 55.2 62.0 11.2 53.0 15.7 33.6 36.3 47.6 20.69
Admixm1=1-CFM-RDI 56.6 84.0 81.7 51.1 64.8 6.3 52.3 10.7 28.1 29.5 46.5 9.99
Admixm1=5-CFM-RDI 65.9 81.6 82.6 61.8 69.9 12.5 60.4 16.7 40.0 42.4 53.4 52.57

Source : adv-RN-50 Target model

Attack Xcep MB-v2 EF-B0 IR-v2 Inc-v4 ViT LeViT ConViT Twins PiT Avg.
Comput. time

per image (sec)

None (-MI-TI) 7.7 18.6 23.8 8.2 6.8 0.6 7.8 1.4 3.6 3.9 8.2 3.27
RDI 39.7 67.0 68.8 44.2 45.1 10.8 49.5 19.9 29.4 35.8 41.0 3.29
SI-RDI 46.6 66.5 69.5 52.0 52.2 19.4 57.6 35.3 35.2 52.1 48.6 16.34
VT-RDI 38.5 60.3 58.7 42.7 44.9 10.6 46.3 20.0 27.1 34.4 38.4 19.83
ODI 56.3 66.9 73.0 61.1 60.0 22.2 57.7 38.8 40.0 54.9 53.1 9.04
ODI-RDI 52.8 65.6 68.8 57.1 56.8 25.1 57.3 39.5 38.0 53.5 51.5 9.96
Admixm1=1-RDI 46.9 71.8 72.4 48.8 53.0 12.1 55.5 23.1 32.4 38.9 45.5 9.86
Admixm1=5-RDI 48.8 68.0 68.5 50.7 52.9 19.7 56.4 34.1 36.2 49.4 48.5 49.19
VT-Admixm1=1-RDI 42.8 63.4 59.2 45.1 45.4 13.6 46.7 21.9 28.2 38.1 40.4 58.08
CFM 54.3 80.3 80.5 50.5 57.9 11.3 51.7 18.5 32.4 33.6 47.1 3.39
CFM-RDI 67.1 82.4 83.4 64.7 67.4 29.5 69.8 41.8 52.7 59.8 61.9 3.74
CFM-ODI 55.4 68.6 69.9 56.2 57.3 27.6 57.7 41.7 39.7 55.8 53.0 9.12
SI-CFM-RDI 63.4 79.2 79.4 61.8 63.9 33.1 68.9 46.6 52.2 61.9 61.0 18.47
VT-CFM-RDI 58.4 75.7 73.2 58.1 59.4 25.4 61.3 40.0 45.2 53.7 55.0 20.71
Admixm1=1-CFM-RDI 63.6 81.8 81.6 62.1 64.2 29.0 67.1 39.9 49.4 57.7 59.6 9.97
Admixm1=5-CFM-RDI 59.0 75.9 75.5 58.6 58.0 30.3 64.9 43.9 45.1 57.6 56.9 53.05

Table 4. Targeted attack success rates (%) of the combined attacks with multiple techniques against the ten selected target models, which
are more difficult to be disturbed. The experiment was conducted on the ImageNet-Compatible dataset.

Ablation Target model

p αmax Xcep MB-v2 EF-B0 IR-v2 Inc-v4 ViT LeViT ConViT Twins PiT Avg.

0.05 0.5 55.2 78.7 79.2 54.4 60.9 15.7 62.8 29.1 41.0 47.9 52.5
0.05 0.75 59.8 82.1 82.3 61.3 65.3 20.5 67.5 33.8 46.2 53.2 57.2
0.05 1.0 63.9 83.3 83.9 63.0 68.0 24.8 69.8 40.1 50.6 56.6 60.4

0.1 0.5 61.3 81.7 80.8 62.5 64.1 22.8 69.0 37.4 46.2 54.1 58.0
0.1 0.75 67.1 82.4 83.4 64.7 67.4 29.5 69.8 41.8 52.7 59.8 61.9
0.1 1.0 64.9 81.5 81.0 61.6 66.7 28.1 66.6 41.5 49.6 59.8 60.1

0.15 0.5 64.2 82.6 81.9 63.6 67.7 27.0 68.7 41.0 50.8 58.0 60.5
0.15 0.75 62.6 80.4 80.2 61.1 64.0 28.7 65.2 40.9 49.5 56.7 58.9
0.15 1.0 53.2 73.6 72.5 49.7 52.2 22.0 57.2 34.9 39.0 48.6 50.3

Table 5. Targeted attack success rates (%) of CFM-RDI with different mixing probability p and upper bound of mixing ratios αmax. The
source model is adv-RN-50.
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