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S.Figure 1. Deformation Process of Anchor Points (Scan 65). The anchor points (e.g. orange points) are uniformly distributed in the
3D box at beginning, and would move to object surfaces as training convergences. The observation could be a faithful support to our
deformable anchor analyzes. Zoom in for a better view.

1. Qualitative Proof for Deformable Anchors

As discussed in Sec. 4.3 in the main paper, deformable
anchors enable NeuDA to become a more flexible scene rep-
resentation approach for surface reconstruction. Here, we
provide qualitative proof by reporting the anchor points’ de-
formation process in S.Figure 1. Taking a slice of grid vox-
els as an example, we can see the anchor points (e.g. orange
points) are uniformly distributed in the 3D box at beginning,
and would move to object surfaces as training convergences.
This observation should be faithful support that deformable
anchors optimized through backpropagation can adaptively
represent surface geometries and achieve more flexibility in
modeling fine-grained geometric structures.

2. Discussion: Standard Deviation

Following NeuS [4] (See Sec. E.4 and Figure 14 in
their paper), we report the curves of standard deviation for
different methods in S.Figure 2 to evaluate the sharpness
of the reconstructed surface. NeuDA converges rapidly
and yields the lowest value compared to NeuS and Instant-
NeuS, which means NeuDA can produce more clear and
sharper surfaces with less time cost. We find the “standard
deviation curve” might not directly reflect to the global
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S.Figure 2. Discussion: Standard Deviation (Scan 65). The
standard deviation of NeuDA converges rapidly and achieves the
lowest value compared to NeuS [4] and Instant-NeuS [3,4]. NeuS
[4] indicates that lower standard deviation means more clear and
sharper surface.

reconstruction quality, as Instant-NeuS yields a slightly
better mean CD score than NeuS.

Quoted Texts from NeuS: As we can see, the optimization
process will automatically reduce the standard deviation so
that the surface becomes more clear and sharper with more
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training steps.

3. Implementation Details
NeuDA consists of the hierarchical “deformable an-

chors” representation, an SDF network, and a color net-
work. The hierarchical deformable anchors are arranged
into L levels (L set to 8 as default), each contains T co-
ordinate vectors, e.g., (x, y, z). The number of coordinate
vectors T is set to 16 at the coarsest level and is growing by
1.38× than its coarser level. The deformable anchors and
view directions are encoded by positional encoding with 8
frequencies and 4 frequencies, respectively. The signed dis-
tance function is approximated by the 4-layer MLPs with
hidden-layer size of 256. We additionally predict a normal
vector from the SDF network, and using it to construct a
normal regularization loss defined in Eqn. 11 in the main
paper. The color network follows a similar architecture as
NeuS [4], including 4 layers with size of 256. We adopt the
Adam optimizer [2] to opmize the model. We train NeuDA
in 300k iterations and decay the learning rate from 5×10−4

to 2.5× 10−5 via the cosine decay scheduler.

4. More Qualitative Results
S.Figure 3, S.Figure 4, and S.Figure 5 present the qual-

itative results of the remained cases on the DTU [1] and
BlendedMVS [5] datasets for comprehensiveness. Though
NeuDA outperforms NeuS and Instant-NeuS by large mar-
gins quantitatively, the qualitative improvements for some
cases are not really obvious.
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S.Figure 3. More surface reconstruction comparisons on DTU. (Part 1/2)



S.Figure 4. More surface reconstruction comparisons on DTU. (Part 2/2)



S.Figure 5. More surface reconstruction comparisons on BlendedMVS.


	. Qualitative Proof for Deformable Anchors
	. Discussion: Standard Deviation
	. Implementation Details
	. More Qualitative Results

