
A. Experimental Details
A.1. Observation and Action Space

The agent receives identical information as human play-
ers do. The observation space primarily comprises four
components: 1) ego-centric RGB frames, 2) voxels (sur-
rounding blocks), 3) GPS locations (the agent’s three-
dimensional coordinates), and 4) compass (pitch/yaw an-
gles). These are shaped as (3, 480, 640), (3, 3, 3), (3, ), and
(2, ), respectively. It is important to note that the agent does
not know the precise location of the target object. Instead,
the agent can only obtain information about the target ob-
ject by examining the pixel image. The RGB frames are
resized to a shape of (3, 128, 128) using bilinear interpola-
tion before being fed into the networks. At each step, the
agent must execute a movement action, camera action, and
functional action. A compound action space is employed,
consisting of a multi-discrete space with six dimensions:
1) forward and backward, 2) move left and right, 3) jump,
sneak and sprint, 4) camera delta pitch, 5) camera delta
yaw, and 6) functional actions (attack and use). The origi-
nal delta camera degree, which ranges from -180 to 180, is
discretized into 11 bins. As this paper’s primary focus is on
resource collection rather than item crafting, actions related
to crafting are omitted.

A.2. Data Collection Pipeline
Our data collection pipeline collects high-quality goal-

conditioned demonstrations with actions. The core idea is to
train a proxy policy with non-goal demonstrations and roll
out in customized environments, then filter the demonstra-
tions according to the achievement. Generally, the pipeline
consists of six steps: 1) collect online videos, 2) clean and
label the videos, 3) train a proxy policy, 4) customize the
environments, 5) roll out the proxy policy, and 6) filter by
the accomplishments.

Video-Pretraining [4] is ideally suited for stages 1-3.
It begins by amassing a vast dataset of Minecraft videos,
sourced from the web using relevant keywords. Given that
collected videos often feature overlaid artifacts, the process
filters out videos without visual artifacts and those from sur-
vival mode. Next, an Inverse Dynamics Model (IDM) is
trained to label these videos with actions, yielding demon-
strations for proxy policy training. We directly employ the
pretrained VPT[4] as our proxy policy. In stage 4, we utilize
APIs supplied by MineDojo[16] to create environments tai-
lored to each task’s success criteria. During stage 5, we de-
ploy the proxy policy, recording successful trajectories and
their corresponding achieved goals. The environment is re-
set once the episode concludes or the goal is accomplished,
ensuring trajectory independence.

Notably, we execute the proxy policy rollout in parallel
using 16 processes on 4 A40 GPUs, generating 0.5GB of

demonstrations per minute (without leveraging video com-
pression algorithm during storing frames). This approach
minimizes human intervention and enhances data collection
efficiency. In total, we have gathered 215GB, 289GB, and
446GB of goal-conditioned demonstrations from Plains,
Flat, and Forest environments, respectively.

A.3. Implementation
Horizon discretization. As the horizon illustrates the
number of steps required to attain the desired objective, it
is infeasible to precisely determine the exact value. In prac-
tice, we suggest dividing the original horizon into 16 dis-
tinct segments: [0, 10) ! 0, [10, 20) ! 1, [20, 30) ! 2,
· · · , [90, 100) ! 9, [100, 120) ! 10, [120, 140) ! 11,
· · · , [180, 200) ! 14, and [200,1) ! 15. In this ap-
proach, each segment inherently represents a phase that sig-
nifies the level of task completion. Consequently, the hori-
zon prediction issue can be framed as a multi-class problem.
It is important to note that the method of discretization is not
singular and merits further exploration in the future.
Training. The observation of RGB image is scaled into
128⇥128 where no data augmentation is adopted. We train
the policy with the AdamW optimizer and a linear learn-
ing rate decay. We use an initial learning rate of 0.0001, a
batch size of 32, and a weight decay of 0.0001. Besides,
we also use a warmup trick that the learning rate linearly
increases from 0 to 0.0001 in 10k iterations. The policy
is trained for 500k iterations on our collected dataset. It
takes one day on a single A40 GPU. To train the baseline
policies BC (VPT) and BC (CLIP), we only finetune the bias
terms of their backbones, which is widely adopted by pre-
vious works [7, 23, 50]. Also note that, to keep the archi-
tecture comparable, we only transfer model and weights of
the backbone from vpt model and MineCLIP model while
replace their transformer architecture with ours.
Evaluation. During the evaluation, the maximum episode
length is empirically set to 600, 600, and 300 for the Flat,
Plains, and Forest biomes, respectively. In most in-
stances, the agent is able to complete the assigned tasks
within these limits. Furthermore, in our adaptive horizon
prediction module, the hyperparameter c is empirically set
to 3. The model is evaluated every 10,000 gradient up-
dates. During each evaluation round, each goal is assessed
10 times to compute the Success Rate and Precision met-
rics. For the ablation study, we utilize the checkpoint after
500,000 training iterations, evaluate each goal 200 times,
and report the average metrics in Table 5 and Figure 5.

B. Horizon Distribution Analysis
To further emphasize the importance of our adaptive

horizon prediction module, we have visualized the distri-
bution of successful trajectory lengths for various tasks in
Minecraft, as shown in Figure 6. These successful trajec-
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Figure 6. Successful trajectory distribution of different tasks in open-ended Minecraft. The distribution is long-tailed, making it hard
to learn goal-conditioned policies with a fixed horizon.

tories were gathered from agents trained using single-task
behavior cloning (with a randomly initialized Impala CNN
as the backbone) in the Plains biome.

As depicted in Figure 6, the distribution of successful tra-
jectory lengths in the open-world setting exhibits a long tail,
making it challenging to train a policy with a fixed horizon.
This can be attributed to Minecraft’s extensive explorable
space, partial observation properties, and non-stationary dy-
namics, which set it apart from other popular multi-task,
closed-ended environments like Meta-World [49].

Consequently, the minimum number of steps needed for
an agent to achieve its goal varies across different environ-
ments and episodes. The episode length typically hinges
on the relative position and terrain constraints between the
target object and the agent’s initial position. An added
layer of complexity arises when no target objects are near
the agent’s starting location, necessitating large-scale explo-
ration (i.e., a larger horizon). Once the agent locates the
target object, it must track it until the relevant skill can be
executed on the object (e.g., killing or harvesting). This de-
mands that the agent remain aware of its current stage.

Our proposed adaptive horizon prediction module incor-
porates the horizon as an additional condition for the policy.
The policy explicitly takes into account the remaining time
steps needed to achieve specific goals. Our experiments in
Section 4.3 demonstrate that the adaptive horizon predic-
tion module and the horizon loss Lh effectively enhance
the success rate in open-world environments with such dis-
tributions.

C. Limitation and Future Work
In essence, our approach hinges on trajectories labeled

with goals, which enables it to generalize across various
domains, provided that such data is accessible. When only
video segments labeled with actions are available, we can

employ a goal predictor to assign goal labels to these clips.
This can also be achieved by utilizing zero-shot models,
such as CLIP. Moreover, if action labels are absent in these
clips, we can resort to training an inverse dynamics model,
as demonstrated in VPT. Undoubtedly, these present in-
triguing avenues for future exploration
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