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In this supplementary material, we show more details
about datasets, network architectures and hyperparameters,
ablation studies, and additional qualitative results.

1. Datasets

Our experiments use four indoor-scene datasets, which
have RGB-D video frames with ground truth depths and
known camera poses. ScanNet [3] and DTU [8] are used
in training and testing, and 7scenes [7] and RGB-D Scenes
V2 [10] are evaluated for zero-shot generalization.

ScanNet. Our network is trained from scratch on Scan-
Net [3] using the official training split. Following the frame
selection heuristic in [4], considering appropriate view frus-
tum overlap and sufficient baselines, we sample 279,494
training samples and 20,000 validation ones. Each sam-
ple contains 3 frames, with one as a reference frame and
the others as source frames. For testing, we use Scan-
Net’s official test split (with 100 sequences from scene707
to scene806) and sample every 10 frames following [12], re-
sulting in 20,668 samples for quantitative evaluation. Scan-
Net has images in 640×480 resolution. In training, they are
resized to 256×256 with cropping following [4]. For infer-
ence, the input images are resized to 320×256 without crop-
ping. The predicted depth maps are upsampled with nearest
neighbor interpolation to the original resolution 640×480
before calculating the quantitative metrics.

DTU. DTU [8] is a smaller dataset compared with Scan-
Net, but with accurate ground truth depth and pose obtained
by a structured light scanner. Following [16–18], the depth
range for sampling depth hypotheses is set to dmin = 0.425
and dmax = 0.935 meters. Based on the view selection
and robust training strategy in [15, 16], we sample 27,097
training samples, 6,174 validation ones, and 1,078 ones for
evaluation. Each sample has 5 frames. Input image size is
512×256 in network training, and 640×512 for inference
and upsampled with nearest neighbor interpolation to the
original size 1600× 1152 for evaluation. To coordinate with
ScanNet [3] and 7scenes [7], we use the same depth evalu-
ation metrics proposed in [5].

7-Scenes. We select 13 sequences from 7-Scenes for zero-
shot generalization. The valid depth range is set the same as
that on ScanNet. We generate a test set with 1,610 samples
(each with 5 frames, at 640×480 resolution) by sampling
the sequences every 10 frames.

RGB-D Scenes V2. It contains indoor scenes, including
chair, sofa, table, bowls, caps, cereal boxes, coffee mugs,
and soda cans, etc. We select 8 sequences for testing. Sim-
ilarly, we sample the video sequence every 10 frames to
generate 610 testing samples (each with 5 frames).

2. Experimental Setup
Implementation Details: Our model is implemented us-
ing PyTorch [13], and trained end-to-end with a mini-batch
size of 8 per NVIDIA RTX A6000 GPU. During train-
ing, we use the AdamW optimizer and clip gradients to
the range of [−1, 1]. When generating the cost volume by
plane-sweep stereo, we set the plane hypotheses number as
M0=64. When predicting the final depth using the index
field, we set the plane hypotheses number as M1=256. The
same hyperparameters as in [11] are adopted for the context
network and 3-level GRU architecture.

Training Schedule: Our network is trained for 20 epochs,
with an initial learning rate of 1e-4 and decayed by half at
epoch 4th and 8th, respectively. For a fair comparison, we
also train the baselines PairNet [4] and IterMVS [15] on
the same training samples of ScanNet for 20 epochs, using
the official codes. For the baseline PairNet we follow the
suggested learning rate scheduler, and for the baseline Iter-
MVS, we use a learning rate of 1e-4, which is decayed by
half at epoch 4th and 8th.

3. Our Modules Improve Existing Backbones
Our proposed residual pose module and asymmetric at-

tention module can help improve existing state-of-the-art
methods. Here we take two baselines - IterMVS [15] and
MVSNet [17] as the backbone. Tab. 1-(a) shows the im-
proved accuracy on the ScanNet test set [3] due to incorpo-
rating our residual pose module (i.e., +pose) and our asym-
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metric attention module (i.e., +atten). Results in parenthe-
sis and highlighted by gray, denote the residual pose is only
used for network training but not for inference 1. Note that
they are listed for reference only, and are not used for com-
parison with the numbers on other rows. We can see our
+pose and +atten can always boost the baseline backbones
on the ScanNet test set. Tab. 1-(b) shows the evaluation
on DTU test set [8]. Our +atten always helps improve the
baselines. Our +pose can boost the baseline IterMVS [15],
but achieves no obvious improvement on baseline MVS-
Net [17], probably because the ground truth poses are ac-
curate enough, and the features are concatenated when con-
structing the cost volume, which is different from the dot
production of features in ours and baseline IterMVS.

4. Network Architectures

Multi-scale Feature Fusion Layer. The fusion layer
G aggregates multi-scale features fi,2 ∈ RH/2×W/2×F0 ,
fi,4 ∈ RH/4×W/4×F0 , fi,8 ∈ RH/8×W/8×F0 and
fi,16 ∈ RH/16×W/16×F0 into a matching feature fi ∈
RH/4×W/4×F1 at 1/4 scale. Here F0=32 and F1=128 for
feature channels, i = 0 for the reference image, and i =
1, . . . , N − 1 for the source images. The architecture is
shown in Fig. 1, including up- and down-sampling, concate-
nation along the feature channel, a convolution layer Conv0
(with kernel size 3×3, in- and out- channels 128/128), batch
normalization, ReLU, and another convolution layer Conv1
(with kernel size 1×1, in- and out- channels 128/128).

Context Feature Network C-Net. We use the context
feature network as in [9, 11, 14], which consists of several
residual blocks. It contains around 4.32M parameters.

Model Capacity. As shown in Tab. 2, the total num-
ber of parameters in our network is 27.6M, where residual
pose network takes up 47.18%, GRU-based optimizer takes
up 25.20%, and the transformer block takes up 1.25%. If
not considering the residual pose net, our model then has
14.57M parameters, and most of them are assigned to GRU-
based updater, and fewer capacities are on feature extrac-
tors. This kind of capacity configuration makes our model
not specialized to one domain (for feature extraction), and
is well generalized to unseen domains due to the learning
to optimize anchored at cost volume via the GRU-based op-
timizer to predict the index fields for iteratively improved
matching.

Network Training and Log Summary. Our network
is trained from scratch on the ScanNet training set (with
279,494 samples). It takes around 2 days on 4 NVIDIA
RTX A6000 GPUs for up to 20 epochs of training. The
GRU iteration number is set to 12 for training. The to-

1only the ground truth pose is used for feature warping and cost volume
construction.

tal batch size is 32 (i.e., 8 per GPU). Training image size
is 256×256. We show the log summary of network train-
ing at the last logging step (i.e., step=99,609). From the
top to bottom, Fig. 2 shows a batch of input samples (batch
size = 4 for logging), including reference images I0 and two
source images I1 and I2, the ground truth depth maps and
our depth predictions. The residual pose net is supervised
by the photometric loss as shown in Fig. 3. We do one epoch
of warmup training only for the residual pose net with other
layers frozen.

GRU Iterative Updates. Fig. 4 illustrates the iterative
estimation of depth maps. For better visualization, we put
the reference images and the ground truth depths on the first
two rows. The bottom 4 rows show the depth predictions at
iteration step t = 0, 4, 8, 12 for each batch sample. Itr-0
means the softargmin-start we introduced to accelerate the
GRU training and convergence. We can see the depth maps
are progressively improved within T iterations (here T =
12 in network training for the trade-off between the memory
consumption and depth accuracy).

Network Inference. For inference, we set the GRU it-
eration number as T = 24 by default, and we also ablate
other values of T in the main paper. The input image is in
320×256 resolution, and it is upsampled to 640×320 for
ScanNet benchmark evaluation and cross-dataset general-
ization. The GPU memory consumption is 2088MiB from
nvidia-smi, and runtime in inference mode is 8.6 fps when
processing frames with dimension 320 ×256.

5. Additional Ablation Studies

We introduce more ablation studies to verify our design.

Frame Sampling: We compare the simple view selec-
tion strategy (i.e., sampling by every 10 frames), with the
heuristics introduced in [4]. Tab. 3 shows that our meth-
ods can be further improved when the selected views have
more overlapping and the baselines between them are suit-
able. Our(+pose,atten) even with simple strategy outper-
forms other variants with heuristic sampling, and so are
our(+pose) vs our(base), verifying the effectiveness of each
module.

Different Depth Binning. When implementing plane-
sweep stereo [2, 6] to construct the cost volume, we need
to sample M0=64 plane hypotheses. In our main experi-
ments, we use the inverse depth bins, i.e., the plane hypothe-
ses are uniformly sampled in the inverse depth space, s.t.
1/d ∼ U(dmin, dmax). Here we set dmin=0.25 and dmax=20
meters for indoor scenes (e.g., ScanNet [3]). We also test
linear depth bins, i.e., d ∼ U(dmin, dmax), and hand-crafted
depth bins by calculating the depth distribution on Scan-
Net. But we found that inverse depth binning achieves the
best results, as we reported in the main paper. We also test



Method ScanNet Test-Set
abs-rel (↓) abs(↓) sq-rel(↓) rmse(↓) rmse-log(↓) δ < 1.25/1.252/1.253 (↑)

MVSNet [17] 0.1032 0.1865 0.0465 0.2743 0.1385 0.8935 0.9775 0.9942
MVSNet(+pose) 0.0937 0.1714 0.0401 0.2565 0.1300 0.9072 0.9803 0.9947

(0.0955) (0.1766) (0.0431) (0.2654) (0.1339) (0.9021) (0.9785) (0.9941)
MVSNet(+atten) 0.1018 0.1853 0.0468 0.2734 0.1377 0.8957 0.9779 0.9941
IterMVS [15] 0.0991 0.1818 0.0518 0.2733 0.1368 0.8995 0.9741 0.9915
IterMVS(+pose) 0.0958 0.1813 0.0480 0.2715 0.1343 0.9004 0.9758 0.9923

(0.0943) (0.1777) (0.0472) (0.2687) (0.1336) (0.9037) (0.9764) (0.9923)
IterMVS(+atten) 0.0920 0.1741 0.0431 0.2620 0.1298 0.9066 0.9785 0.9936

(a) Quantitative results on ScanNet Test Set [3].

Method DTU Test-Set
abs-rel (↓) abs(↓) sq-rel(↓) rmse(↓) rmse-log(↓) δ < 1.25/1.252/1.253 (↑)

MVSNet [17] 0.0143 10.7235 1.4193 25.3989 0.0356 0.9882 0.9984 1.0
MVSNet(+pose) 0.0151 11.1539 1.2867 24.3420 0.0337 0.9907 0.9988 1.0

(0.0129) (9.8094) (1.2638) (23.8917) (0.0330) (0.9905) (0.9987) (1.0)
MVSNet(+atten) 0.0123 9.1150 1.1311 22.3525 0.0311 0.9909 0.9986 1.0
IterMVS [15] 0.0146 10.6225 2.1377 28.7009 0.0404 0.9832 0.9960 0.9997
IterMVS(+pose) 0.0129 9.9510 1.8261 28.1695 0.0385 0.9831 0.9978 0.9999

(0.0128) (9.8926) (1.8216) (28.1242) (0.0384) (0.9832) (0.9977) (0.9999)
IterMVS(+atten) 0.0130 9.4121 1.8775 25.6287 0.0357 0.9860 0.9969 0.9993

(b) Quantitative results on DTU Test Set [8].

Table 1. Quantitative evaluation results on the test set of ScanNet [3] and DTU [8] for our modules applied to baseline MVSNet [17] and
IterMVS [15]. Error metrics (lower is better) are abs-rel, abs, sq-rel, rmse, rmse-log, while accuracy (higher is better) metrics are δ <
1.25/1.252/1.253. Bold is the best score, and underline indicates the second best one. The results given in parenthesis and highlighted
by gray, denote that the residual pose is only used for network training, but not for inference. They are listed for reference but not for
comparison with other rows.

Figure 1. Multi-scale feature fusion layer.

adaptive depth bins as in [1], where the depth bins are dy-
namically generated upon the global feature learned by a
transformer layer. For our(+pose) variant, adaptive depth
bins lead to marginal improvement than the inverse depth
bins. However, for our(+pose,atten) variant, adaptive depth

bins hinder the depth accuracy.

6. Qualitative Results

Depth and Error Maps. More qualitative re-
sults of depth maps and error maps on the Scan-



Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

Src I1 (b0) Src I1 (b1) Src I1 (b2) Src I1 (b3)

Src I2 (b0) Src I2 (b1) Src I2 (b2) Src I2 (b3)

GT Depth (b0) GT Depth (b1) GT Depth (b2) GT Depth (b3)

Pred Depth (b0) Pred Depth (b1) Pred Depth (b2) Pred Depth (b3)

Figure 2. Training logs at last logging step on ScanNet [3] training set. Columns show samples and results of mini-batch ones b0, b1, b2,
and b3. For the training logs, we show the color maps of the ground truth depths and predictions in the inverse space (i.e., disparity), so as
to better align with the training loss calculated on the inverse depth domain.



Layers F-Net C-Net Transformer Residual Pose Net GRUs Total
Parameter (M) 2.9545 4.3212 0.3438 13.0120 6.9501 27.5816

Percentage 10.70% 15.67% 1.25% 47.18% 25.20% 100%

(a) Our model capacity (full version).

Layers F-Net C-Net Transformer Residual Pose Net GRUs Total
Parameter (M) 2.9545 4.3212 0.3438 - 6.9501 14.5696

Percentage 20.28% 29.66% 2.36% - 47.70% 100%

(b) Our model capacity, if without residual pose net.

Table 2. Our model capacity. Parameter numbers are given in million (M) and the percentage of each module is listed.

Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

Recon Ref Ĩ0←1 (b0) Recon Ref Ĩ0←1 (b1) Recon Ref Ĩ0←1 (b2) Recon Ref Ĩ0←1 (b3)

Recon Ref Ĩ0←2 (b0) Recon Ref Ĩ0←2 (b1) Recon Ref Ĩ0←2 (b2) Recon Ref Ĩ0←2 (b3)

Figure 3. Residual pose training. The top row shows the reference images, and the bottom two rows show the reconstructed images of the
reference view by warping the source images with the updated poses and predicted depth map of the reference view.

Net test set [3] are shown in Fig. 6. The sam-
ples shown here are scene0711 00/001050.png,

scene0711 00/002530.png, scene0727 00/001260.png,
and scene0769 00/000720.png. The error maps contain



Ref I0 (b0) Ref I0 (b1) Ref I0 (b2) Ref I0 (b3)

GT Depth (b0) GT Depth (b1) GT Depth (b2) GT Depth (b3)

GRU Itr-0 (b0) GRU Itr-4 (b0) GRU Itr-8 (b0) GRU Itr-12 (b0)

GRU Itr-0 (b1) GRU Itr-4 (b1) GRU Itr-8 (b1) GRU Itr-12 (b1)

GRU Itr-0 (b2) GRU Itr-4 (b2) GRU Itr-8 (b2) GRU Itr-12 (b2)

GRU Itr-0 (b3) GRU Itr-4 (b3) GRU Itr-8 (b3) GRU Itr-12 (b3)

Figure 4. Iterative depth estimation from GRU layers. The bottom 4 rows show the depth predictions at iteration step t = 0, 4, 8, 12 for
each batch sample (b1, b2, b3 and b4).



Sampling abs-rel abs δ < 1.25
s10 (base) 0.0885 0.1605 0.9211
key (base) 0.0838 0.1598 0.9277
s10 (+pose) 0.0827 0.1523 0.9277
key (+pose) 0.0789 0.1531 0.9339
s10 (+pose,atten) 0.0747 0.1392 0.9382
key (+pose,atten) 0.0697 0.1348 0.9472

Table 3. Frame sampling comparison. The results are evaluated
on the ScanNet test set [3].

Figure 5. Color scale used for all abs error in depth maps in the
supplementary material.

the absolute errors abs in depth. For the ground truth depth
maps and the error maps, invalid regions (i.e., without
ground truth depth annotation) are filled in black. The
color maps of the ground truth depths and predictions are
shown in the depth space (i.e., not in disparity space). The
abs errors (in meters) are superimposed on the error maps
for better comparison. The corresponding color bar to
visualize the error maps is shown in Fig. 5. Comparing
the depth predictions and the error maps for our method
and the baseline IterMVS [15] and baseline PairNet [4],
our method predicts more accurate estimates, especially in
the challenging regions, e.g., the boundary, the ground, the
white wall, and the round desk.

Cross-Dataset Generalization from ScanNet to DTU
Fig. 7 shows the depth maps of DTU dataset when gen-
eralized from ScanNet without fine-tuning, and our method
outperforms IterMVS visibly, and on par with PairNet.

The ScanNet test set in our experiments contains 20,668
samples. As shown in Fig. 8, we report abs error curves
(by plotting values in meters every 100 frames, out of those
20,668 samples) to reflect the distribution of the errors. We
also compare the mean and standard deviation to reflect the
overall performance of our method versus the baselines:
mean error 0.139 (our) < 0.171 (PairNet) < 0.182 (Iter-
MVS), and standard deviation 0.115 (our) < 0.135 (Iter-
MVS) < 0.148 (PairNet), showing that our method consis-
tently outperforms the baselines with smaller average and
lower standard deviation.

7. Quantitative Metrics

We use the metrics defined in [5], including mean ab-
solute error (abs), mean absolute relative error (abs-rel),
squared relative error (sq-rel), RMSE in linear (rmse) and

log (rmse-log) scales, and inlier ratios under thresholds of
1.25/1.252/1.253. For a predicted depth map y and ground
truth y∗, each with n pixels indexed by i, those metrics are
formulated as:

abs :
1

n

∑
i

|yi − y∗i |

abs-rel :
1

n

∑
i

|yi − y∗i |/y∗i sq-rel :
1

n

∑
i

∥yi − y∗i ∥2/y∗i

rmse :

√
1

n

∑
i

∥yi − y∗i ∥2

rmse-log :

√
1

n

∑
i

∥ log yi − log y∗i ∥2

inlier ratio% of yi s.t. max
(
yi
y∗i

,
y∗i
yi

)
= δ < 1.25i,

where i = 1, 2 and 3.
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