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Table 1. The anomaly classes in each scene of our NWPU Campus dataset.
Index Scene Anomalies Index Scene Anomalies

1 D001 Climbing fence 23 D109 Loitering, Protest, Falling, Stealing
2 D002 Jaywalking 24 D111 Crossing lawn
3 D003 Dogs, Trucks 25 D121 Playing with water
4 D013 Cycling on square 26 D122 Playing with water
5 D014 Climbing fence 27 D124 Playing with water
6 D029 Battering, Group conflict 28 D127 Playing with water

7 D031
Group conflict, Battering, Climbing tree,
Chasing, Littering 29 D129 Playing with water, Cycling on footpath

8 D035 Illegal parking, Jaywalking 30 D148 Forgetting backpack
9 D036 Climbing tree, Photographing in restricted area 31 D149 Stealing

10 D038 Jaywalking, Photographing in restricted area 32 D150 Stealing, Forgetting backpack
11 D042 Scuffle 33 D151 Stealing, Forgetting backpack

12 D043 Group conflict 34 D154
Suddenly stopping cycling in the middle
of the road, Protest

13 D047
Suddenly stopping cycling in the middle of the
road, U-turn, Driving on wrong side 35 D155 Protest

14 D048 Forgetting backpack 36 D158 Chasing, Loitering, Falling, Stealing
15 D054 U-turn 37 D164 Kicking trash can

16 D055
U-turn, Suddenly stopping cycling in the
middle of the road, Driving on wrong side 38 D235 Cycling on square

17 D068 Climbing fence, Snatching bag 39 D236 Driving on wrong side
18 D076 Group conflict, Snatching bag 40 D248 Scuffle, Forgetting backpack
19 D077 Group conflict, Snatching bag 41 D268 Driving on wrong side
20 D092 Protest, Car crossing square 42 D273 Climbing fence
21 D094 Protest 43 D282 Loitering
22 D099 Kicking trash can

1. NWPU Campus Dataset
The 28 anomaly classes in our NWPU Campus dataset

are listed in Tab. 2. As can be seen, there are 4 classes of
†Corresponding author

scene-dependent anomalies, i.e., cycling on footpath, wrong
turn, photographing in restricted area, and trucks. It should
be noted that scene-dependent anomaly is different from lo-
cation anomaly. Location anomaly means that whether an
event is normal or not is determined by the location where
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Table 2. The list of anomaly classes in our NWPU Campus dataset. ”s.d.” stands for a scene-dependent anomaly.

Climbing fence Car crossing square Cycling on footpath (s.d.) Kicking trash can
Jaywalking Snatching bag Crossing lawn Wrong turn (s.d.)
Cycling on square Chasing Loitering Scuffle
Littering Forgetting backpack U-turn Battering

Driving on wrong side Falling
Suddenly stopping cycling in the
middle of the road Group conflict

Climbing tree Stealing Illegal parking Trucks (s.d.)
Protest Playing with water Photographing in restricted area (s.d.) Dogs

D013 D129

Figure 1. The scenes ”D013” and ”D129” in our NWPU Campus
dataset.

it occurs in a scene. For example, as shown in Fig. 1, in
the scene ”D013” of our dataset, cycling on road is nor-
mal, while cycling on square is anomalous. Therefore, cy-
cling on square is a location anomaly rather than a scene-
dependent anomaly. As to scene-dependent anomaly, once
a certain event occurs in the scene where it is not allowed,
the event is considered to be abnormal regardless of its lo-
cation. Hence, cycling on footpath in the scene ”D129” is
a scene-dependent anomaly. In our dataset, we try to cover
as many types of anomalies as possible to study the perfor-
mances of algorithms for different anomalies, especially the
scene-dependent anomaly.

The anomaly classes in each scene are shown in Tab. 1.
We take photographing in restricted area as an example to
demonstrate the scene-dependent anomaly in our dataset. In
the scenes ”D036” and ”D038”, the training videos do not
contain photographing, and thus photographing in the test-
ing videos of these two scenes is anomalous. In contrast,
although there are behaviors of photographing in the scene
”D055”, they are regarded as normal events since both train-
ing and testing videos include photographing.

2. Model details
We illustrate the details of our forward and backward

networks which share the same structure in Fig. 2. The en-
coder of U-Net is based on ResNet-34 [4]. The U2-down
and U3-down blocks output feature maps with spatial sizes
of 64×64 and 32×32 pixels respectively. The scene image
is fed into the scene encoder to generate a scene encoding of

length Ns. We set Ns as the number of scenes in a dataset.
To reduce computational complexity and avoid overfitting,
we train the conditional variational auto-encoder (CVAE)
to reconstruct feature maps in channel wise. That is, for
the feature maps output by U2-down/U3-down, we take the
feature map in each channel as an independent instance, and
feed it into the CVAE after concatenated with the scene en-
coding. For each input feature map, the CVAE samples a
latent variable vector of length 2 from posterior distribution
by reparameterization technique [9], concatenates it with
the scene encoding, and decodes it to reconstruct the feature
map. The decoder of U-Net gradually increases the spatial
size of feature maps by transposed convolution and finally
outputs the predicted frames.

In our network, all layers adopt batch normalization [6]
except the CVAEs which use layer normalization [1]. We
use ReLU [13] activation function for all the convolutional
layers and Leaky ReLU [12] for the transposed convolu-
tional layers. The activation function for the linear layers in
CVAEs is GELU [5], while it is softmax for the last linear
layer in the scene encoder. We do not use normalization and
non-linear activation in the last layer of the U-Net decoder.

We sample frames with a sampling rate of 2 on the
ShanghaiTech, CUHK Avenue as well as IITB Corridor
datasets. On our NWPU Campus dataset, we use the sam-
pling rate of 12.5, which is consistent with the interval of
anticipation times (i.e. 0.5s) in the VAA task. For non-
integer frame positions, we use rounding to select its nearest
frame. The scene image is resized to 480×480 pixels before
fed into the scene encoder.

In the training phase, we first train the scene encoder
with cross-entropy loss via scene classification. Then its
parameters are frozen to train the whole network. We use
Adam [8] optimizer to train our network for 80 epochs with
a learning rate of 0.01, which is decayed to 0.001 at the 50th
epoch. In the testing phase, the frame-level anomaly score
is obtained from the maximum score of the objects on that
frame. Following previous works [7, 10, 11], we adopt a
Gaussian filter to smooth the frame-level anomaly scores.



Figure 2. The specific structure of our network. For a feature map or image with shape [channel, height, width], we denote its
dimensions as [channel, height×width] for convenience, where height and width are always equal. [Ns] represents a vector of
length Ns. Convolutional layers / transposed convolutional layers are represented by C/CT(output channel, kernel size, stride).
L(output channel) represents linear layers. P(kernel size, stride) represents the max pooling layer. PGA denotes the global average
pooling layer. The normalization and non-linear activation layers, as well as the 1×1 convolutional layers that used in certain residual
connections are not displayed in the figure. ”Sce. enc.” denotes the scene encoder.

Table 3. Training videos and testing videos of the ShanghaiTech-
sd dataset. The number before the underscore represents the scene
number.

Training videos (35) Testing videos (20)
01 0016 06 004 10 010 01 0014 06 0155
01 0029 06 005 10 011 01 0027 10 0037
01 0063 06 007 12 002 01 0051 10 0074
01 0073 06 008 12 003 01 0052 12 0142
01 0076 06 009 12 004 01 0053 12 0148
01 0129 06 014 12 005 01 0138 12 0151
01 0131 10 001 12 006 01 0139 12 0154
01 0134 10 002 12 007 01 0163 12 0173
01 0177 10 006 12 008 06 0147 12 0174
06 001 10 007 12 009 06 0150 12 0175
06 002 10 008 12 015
06 003 10 009

3. Study on Scene-dependent Anomalies
3.1. ShanghaiTech-sd Dataset

The training videos and testing videos of the
ShanghaiTech-sd datasets reorganized by us are shown
in Tab. 3. In the training videos, the scene ”01” contains

”cycling” events picked from the testing set of the original
ShanghaiTech dataset, while cycling is not included in
other scenes. All the scenes in the testing set contain
cycling. However, cycling in the scene ”01” is a normal
behavior, while it is an abnormal behavior in other scenes.

3.2. Visualization

To qualitatively study the effect of our scene-conditioned
VAE in terms of scene-dependent anomalies, we visualize
the score curves of our method in Fig. 3. Note that since the
range of anomaly scores varies from method to method, we
first scale the scores to the range of [0, 1] for each method.

In the ”12 0175” video of ShanghaiTech-sd and the
”D036 08” video of NWPU Campus, cycling and pho-
tographing are anomalous events, respectively. Since the
training sets contain cycling and photographing in other
scenes, the powerful representation capacity of CNNs al-
lows our model without scene-conditioned VAEs (i.e. γ=0)
to predict frames accurately, resulting in low anomaly
scores. In contrast, using scene-conditioned VAEs (i.e.
γ=1) can increase the frame prediction error for these two
behaviors in the corresponding scene, which generates sig-
nificantly higher anomaly scores and thus identifies scene-
dependent anomalies. We find that this is the main way
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Figure 3. Visualization of score curves on ShanghaiTech-sd and NWPU Campus datasets. γ is the hyper-parameter in our model to control
whether to use the proposed scene-conditioned VAE. ”GT” stands for the groundtruth. A higher score represents a higher probability of
anomaly.

in which our proposed scene-conditioned VAE works. Ad-
ditionally, the scene-conditioned VAE can also reduce the
frame prediction error in the case of normal events. It can
be seen that in the ”01 0014” video of ShanghaiTech-sd
and the ”D055 06” video of NWPU Campus where cy-
cling and photographing are respectively normal events, the
model with scene-conditioned VAEs outputs lower abnor-
mal scores, which can reduce false alerts. Overall, the
proposed scene-conditioned VAE is able to reconstruct the
events not appear in the training set of the scene with large
errors, so as to detect scene-dependent anomalies.

3.3. Number of Input Frames

The number of input and output frames usually has an
effect to the model. In our experiments, we just follow the
common setting in action recognition [3, 15, 16] and use 8
frames as the input for our model. We make an analysis of
the number of input frames, as shown in Fig. 4. It can be
seen that the performance of our model is not over sensitive
to this hyperparameter. When Tin=12 and Tout=11, our
model obtains higher results on ShanghaiTech (79.8%) and
NWPU Campus (68.4%).
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Figure 4. Effect of the number of frames.

3.4. Computational Complexity

The MACs of our forward and backward networks are
11.2G and 10.9G, respectively. Note that we only need
the forward network for VAD. The MACs of representative
methods MNAD [14], AMMC-Net [2], MPN [11] and HF2-
VAD [10] are 57.5G, 93.9G, 55.0G and 1.8G, respectively.
Since HF2-VAD resizes the input images to a smaller scale,
it has lower MACs. However, compared to other models
with the same input resolution, our model is much more
lightweight.

3.5. Discussion of Ethics

All the participants are informed and consent to the re-
lease of the dataset. Besides, we have masked the personal
information such as faces and license plates in the dataset.
To reduce bias, we consider anomalous events and their
manifestations as comprehensive as possible to represent
the diversity of the real situation. Meanwhile, face masking
also reduces the appearance bias against minority groups.

The positive societal impact is that the proposed dataset
can provide data and test-bed for detecting and anticipating
harmful behaviors, thus protecting people’s lives and prop-
erty. The possible negative social impact is that the per-
formed anomalous behaviors could be imitated. However,
we have explicitly warn against imitating those behaviors
when releasing the dataset.
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