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Organization. In this paper, we organize our supplemen-
tary materials as follows. In Section A, we provide more
implementation details and the network architectures of the
proposed method. In Section B, we provide more results of
our method. In Section C, we provide more visual compar-
isons. In Section D, the limitations and societal impacts of
our proposed method are discussed.

A. More Training Details and Architectures
A.1. More Training Details

When testing on a large-scale image, we crop the image
into multiple overlap patches of a smaller size (e.g., 128
or 256), and then merge the SR results into the original
large size. In the scale-aware non-local attention, if we use
multi-scale features, we integrate the features via concate-
nation. For the real SR settings, we consider the following
degradations: Gaussian blur, random resizing, random noise,
JPEG compression. These degradations are the same as
BSRGAN [9] and Real-ESRGAN [7]. In the training, we
use the SwinIR as the backbone. To speed up the training,
we remove the scale-aware non-local attention module.

A.2. Detailed Network Architectures
The decoding Query, Key and Value networks ϕq, ϕk

and ϕv are a 5-layer MLP with ReLU activation and hidden
dimensions of 256. We provide the detailed network archi-
tectures in Table A2. For the backbone RDN, we set the
dimensions as follows. For the Query network ϕq , din=640,
dout=3. For the Key network ϕk, din=580, dout=576. For
the Value network ϕv, din=644, dout=640. For the back-
bone SwinIR, we set the dimensions as follows. For the
Query network ϕq, din=1800, dout=3. For the Key net-
work ϕk, din=1624, dout=1620. For the Value network ϕv ,
din=1804, dout=1800.

Next, we provide the detailed network architectures of
the non-local attention in Table A1. For the backbone
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Table A1. The architecture of the Query ϕq , Key ϕk and Value ϕv

networks for the local attention.

l-th layer Layer information
0 Linear(din, 256, bias=True), ReLU( )
1 Linear(256, 256, bias=True), ReLU( )
2 Linear(256, 256, bias=True), ReLU( )
3 Linear(256, 256, bias=True), ReLU( )
4 Linear(256, dout, bias=True), ReLU( )

Table A2. The architecture of the Query φq , Key φk and Value
φv networks and the downsampling network for the scale-aware
non-local attention.

l-th layer Layer information
0 Conv2d(d1, d2, k=(1, 1), stride=(1, 1)
1 PReLU(num parameters=1)

l-th layer Downsampling Layer information
0 Linear(d1, d1, k = (3, 3), stride=(2, 2), padding=(1, 1)

RDN, we set the dimensions as follows. For the Query
and Key networks, φq, d1=64, d2=32. For the Value net-
work φv, d1=64, d2=64. For the backbone SwinIR, we
set the dimensions as follows. For the Query and Key
networks, φq, d1=180, d2=90. For the Value network φv,
d1=180, d2=180.

B. More Results
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Figure B1. Impacts of local size.

Effect of local size. We
investigate how the size
of the local region affects
the SR performance. We
show the results with dif-
ferent local sizes in Fig-
ure B1. With a small size 1×1, the performance drops
because the discontinuous pattern may appear within SR
images. For a large size, all models are trained with suffi-
cient iterations to ensure the convergence. Our model has
comparable performance but introduces more computational
cost. To trade-off the performance and computational cost,
we set the local size as 2×2 in the experiment.

1

https://github.com/caojiezhang/CiaoSR


Computation cost. In Table B3, our proposed CiaoSR
has the best performance, although it has large FLOPs. In
addition, we also compare a variant of CiaoSR by removing
the non-local attention, denoted by CiaoSR-L. It can trade-
off the cost and the performance.

Table B3. Performance comparison on a 224×224 image.
RDN-Models Meta-SR [3] LIIF [2] ITSRN [8] LTE [5] CiaoSR-L CiaoSR
FLOPs (G) 560.56 722.52 1032.77 1415.21 960.88 2508.70
Memory (G) 10.54 4.73 6.90 6.18 8.83 19.13
PSNR (dB) 26.55 26.68 26.77 26.81 26.96 27.11
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Figure B2. Impacts of scales.

Performance of scales.
In the main paper, we
evaluate the effectiveness
of our implicit model
when trained with discrete
(including single scale
({2}/{3}/{4}) and multiple scales {2, 3, 4}) and continuous
scales [1, 4]. In Figure B2, we show the performance of the
larger continuous scales s∈[1, 8]. The performance improve-
ment is even larger when trained with scales s∈[1, 8]. For
fair comparisons with other methods, we train the models
with scales s∈[1, 4].

Larger network. We construct a large network by removing
the ensemble weights learning such that it has a comparable
computational cost. Table B4 demonstrates the effectiveness
of our proposed architecture.
Table B4. PSNR (dB) of large network and CiaoSR on Urban100.

Methods ×2 ×3 ×4 ×6 ×8 ×12

Large network 33.07 29.00 26.85 24.30 22.89 21.25
CiaoSR 33.30 29.17 27.11 24.58 23.13 21.42

C. More Visual Results
We show more qualitative comparisons on Urban100

[4] and Manga109 [6] in Figure C3. Our model is able to
synthesize the SR images with sharper textures than other
methods. Taking the last line as an example, CiaoSR is able
to restore the textures of the clothes buttons. Our results
have sharper texture compared with other methods. Besides,
we show more visual results on RealSRSet [9] in Figure C4.
Our proposed method achieves comparable or better results
than other methods.

D. Discussion on Limitations
In this paper, we propose a new continuous implicit

attention-in-attention network, which achieves state-of-the-
art performance. However, there may have some limita-
tions, such as model efficiency. The main computational
cost comes from searching the non-local attention features
in the whole image. In the implementation, we reduce the
searching regions. We leave the direction of boosting effi-
ciency in the future.
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Figure C3. Visual comparison of different methods on benchmarks. “∗” means the model first synthesizes twice to ×12 images.
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Figure C4. Visual comparison of different methods on the RealSRSet dataset [9] (×16).
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