
Supplementary Material:
“HexPlane: A Fast Representation for Dynamic Scenes”

Contents

1. General Discussions 1
1.1. Broader Impacts 1
1.2. Limitations and Future Directions 1
1.3. License . 2

2. Training Details and More Results 2
2.1. Plenoptic Video Dataset [7]. 2
2.2. D-NeRF Dataset [13]. 3
2.3. iPhone dataset [4]. 3
2.4. Ablation Details. 3
2.5. Fusion Ablations 6
2.6. Visualization of Feature Planes. 6

3. Failure Cases 6

4. Failed Designs for Dynamic Scenes 6
4.1. Fixed Basis for Time Axis 6
4.2. Frequency-Domain Methods 7

1. General Discussions
1.1. Broader Impacts

Our work aims to design an explicit representation for
dynamic 3D scenes. We only reconstruct existing scenes
and render images from different viewpoints and timesteps.
Therefore, we don’t generate any new scenes or deceive
contents which don’t exist before. Our current method is
not intended and can also not be used to create fake materi-
als, which could mislead others.

We use Plenoptic Video dataset [7] in our experiments,
which contains human faces in videos. This dataset is a
public dataset with License: CC-BY-NC 4.0 with consent.

Our method is hundreds of times faster than exist-
ing methods, consuming significantly less computation re-
sources. Considering the GPU resource usages, our method
could save considerably carbon emission.

1.2. Limitations and Future Directions

For comprehensively understanding HexPlane, we dis-
cuss its limitations and potential future improvements.

The ultimate goal of our paper is to propose and validate
an explicit representation for dynamic scenes instead of pur-
chasing SOTA numbers. To this end, we intend to make
HexPlanes simple and general, making minor assumptions
about the scenes and not introducing complicated tricks to
improve performance. This principle leads to elegant solu-
tions while potentially limiting performance as well. In the
following, we will discuss these in detail.

Many methods [3, 11–13] use deformation and canon-
ical fields to represent dynamic 3D scenes with monocu-
lar videos, where spacetime points are mapped into a static
3D scene represented by a canonical field. Again, we don’t
employ deformation fields in our design since this assump-
tion is not always held in the real world, especially for
scenes with typology changes and new-emerging content.
But this design is very effective for monocular videos since
it introduces a solid information-sharing mechanism and al-
lows learning 3D structures from very sparse views. Hex-
Plane uses an inherent basis-sharing mechanism to cope
with sparse observations. Although this design is shown to
be powerful in our experiments, it is still less effective than
the aforementioned deformation field, leading to degraded
results for scenes with extremely sparse observations. In-
troducing deformation fields into HexPlane, like using Hex-
Plane to represent deformation fields, would be an appeal-
ing improvement for monocular videos.

Similarly, category-specific priors like 3DMM [2] or
SMPL [8] are even more powerful than deformation fields,
which enormously improve results but are hardly limited to
particular scenes. Combining these ideas with HexPlane for
specific scenes would be very interesting.

Existing works demonstrated that explicit representa-
tions are prone to giving artifacts and require strong reg-
ularizations for good results, which also holds in HexPlane.
There are color jittering and artifacts in the synthesized re-
sults, demanding stronger regularizations and other tricks to
improve results further. Special spacetime regularizations
and other losses like optical flow loss would be an interest-
ing future direction to explore. Also, instead of simply rep-
resenting everything using spherical coordinates in the pa-
per, we could have a foreground and background model like
NeRF++ [15], where the background is modeled in spher-

1

Test View

Figure 1. Train and Test View of Plenoptic Video Dataset [7]. Plenoptic Video Dataset has 18 train views and 1 test view.

ical coordinates. Having separate foreground background
models could noticeably improve the results. Moreover,
rather than using the same basis for representing a long
video, using a different basis for different video clips may
give better results. We believe HexPlane could be further
improved with these adjustments.

Besides dynamic novel view synthesis, we believe Hex-
Plane could be utilized in a broader range of research, like
dynamic scene generation or edits.

1.3. License

We provide licenses of assets used in our paper.
Plenoptic Video Dataset [7]. We evaluate our method
on all all public scenes of Plenoptic Video dataset [7],
except a-synchronize scene “coffee-martini”. The dataset
is in https://github.com/facebookresearch/
Neural_3D_Video with License CC-BY-NC 4.0
D-NeRF Dataset [13]. We use D-NeRF dataset provided
in https://github.com/albertpumarola/D-
NeRF.
iPhone Dataset [4]. The iPhone dataset is provided in
https://github.com/KAIR-BAIR/dycheck/, li-
censed under Apache-2.0 license.
Plenoptic Video Dataset Baselines [7]. For all baselines in
this dataset, we use numbers reported in the original paper
since these models are not publicly available.
D-NeRF Dataset Baselines [13]. D-NeRF model is
in https://github.com/albertpumarola/D-
NeRF and Tineuvox model [3] is in https://github.
com/hustvl/TiNeuVox. Tineuvox is licensed under
Apache License 2.0.

2. Training Details and More Results
2.1. Plenoptic Video Dataset [7].

Plenoptic Video Dataset [7] is a multi-view real-world
video dataset, where each video is 10-second long. The
training and testing views are shown in Figure 1.

We have R1 = 48, R2 = 24, R3 = 24 for appear-
ance HexPlance, where R1, R2, R3 are basis numbers for

XY −ZT,XZ−Y T, Y Z−XT planes. For opacity Hex-
Plane, we set R1 = 24, R2 = 12, R3 = 12. We have differ-
ent R1, R2, R3 since scenes in this dataset are almost face-
forwarding, demanding better representation along the XY
plane. The scene is modeled using normalized device co-
ordinate (NDC) [10] with min boundaries [−2.5,−2.0, 0.0]
and max boundaries [2.5, 2.0, 1.0].

Instead of giving the same grid resolutions alongX,Y, Z
axes, we adjust them based on their boundary distances.
That is, we give larger grid resolution to axis ranging a
longer distance, like X axis from −2.5 to 2.5, and provide
smaller grid resolution to axis going a shorter length, like Z
axis from 0 to 1. The ratio of grid resolutions for different
axes is the same as their distance ratios, while the total grid
size number is manually controlled.

During training, HexPlane starts with a space grid size
of 643 and doubles its resolution at 70k, 140k, and 210k to
5123. The emptiness voxel is calculated at 50k and 100k
iterations. The learning rate for feature planes is 0.02, and
the learning rate for VRF and neural network is 0.001. All
learning rates are exponentially decayed. We use Adam [5]
for optimization with β1 = 0.9, β2 = 0.99. We apply Total
Variational loss on all feature planes with λ = 0.0005 for
spatial axes and λ = 0.001 for temporal axes.

We follow the hierarch training pipeline as [7]. Hex-
Plane in Table 1 uses 650k iterations, with 300k stage one
training, 250k stage two training and 100k stage three train-
ing. HexPlane† uses 100k iterations in total, with 10k stage
one training, 50k stage two training and 40k stage three
training. According to [7], stage one is a global-median-
based weighted sampling with γ = 0.001; stage two is also
a global-median-based weighted sampling with γ = 0.02;
stage three is a temporal-difference-based weighted sam-
pling with α = 0.1.

In evaluation, D-SSIM is computed as 1−MS-SSIM
2 and

LPIPS [16] is calculated using AlexNet [6]. We use default
settings for Just-Objectionable-Difference (JOD) [9].

Each scene results are in Table 1, and more visualiza-
tions are in Figure 2. We found that HexPlane gives visually
more smooth results than HexPlane†. Since we don’t have

https://github.com/facebookresearch/Neural_3D_Video
https://github.com/facebookresearch/Neural_3D_Video
https://github.com/albertpumarola/D-NeRF
https://github.com/albertpumarola/D-NeRF
https://github.com/KAIR-BAIR/dycheck/
https://github.com/albertpumarola/D-NeRF
https://github.com/albertpumarola/D-NeRF
https://github.com/hustvl/TiNeuVox
https://github.com/hustvl/TiNeuVox

Table 1. Results of Plenoptic Video Dataset [7]. We report results of each scene.

Model Flame Salmon Cook Spinach Cut Roasted Beef
PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑ PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑ PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑

HexPlane 29.470 0.018 0.078 8.16 32.042 0.015 0.082 8.32 32.545 0.013 0.080 8.59
HexPlane† 29.263 0.020 0.097 8.14 31.860 0.017 0.097 8.25 32.712 0.015 0.094 8.37

Model Flame Steak Sear Steak Average
PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑ PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑ PSNR↑ D-SSIM ↓ LPIPS ↓ JOD ↑

HexPlane 32.080 0.011 0.066 8.61 32.387 0.011 0.070 8.66 31.705 0.014 0.075 8.47
HexPlane† 31.924 0.012 0.081 8.51 32.085 0.014 0.079 8.51 31.569 0.016 0.090 8.36

Table 2. Per-Scene Results of D-NeRF Dataset [13]. We report results of each scene.

Model Hell Warrior Mutant Hook
PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑

T-NeRF 23.19 0.93 0.08 30.56 0.96 0.04 27.21 0.94 0.06
D-NeRF 25.02 0.95 0.06 31.29 0.97 0.02 29.25 0.96 0.11
TiNeuVox-S 27.00 0.95 0.09 31.09 0.96 0.05 29.30 0.95 0.07
TiNeuVox-B 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05
HexPlane 24.24 0.94 0.07 33.79 0.98 0.03 28.71 0.96 0.05

Model Bouncing Balls Lego T-Rex
PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑

T-NeRF 37.81 0.98 0.12 23.82 0.90 0.15 30.19 0.96 0.13
D-NeRF 38.93 0.98 0.10 21.64 0.83 0.16 31.75 0.97 0.03
TiNeuVox-S 39.05 0.99 0.06 24.35 0.88 0.13 29.95 0.96 0.06
TiNeuVox-B 40.73 0.99 0.04 25.02 0.92 0.07 32.70 0.98 0.03
HexPlane 39.69 0.99 0.03 25.22 0.94 0.04 30.67 0.98 0.03

Model Stand Up Jumping Jacks Average
PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑ PSNR↑ SSIM↑ LPIPS ↑

T-NeRF 31.24 0.97 0.02 32.01 0.97 0.03 29.51 0.95 0.08
D-NeRF 32.79 0.98 0.02 32.80 0.98 0.03 30.50 0.95 0.07
TiNeuVox-S 32.89 0.98 0.03 32.33 0.97 0.04 30.75 0.96 0.07
TiNeuVox-B 35.43 0.99 0.02 34.23 0.98 0.03 32.64 0.97 0.04
HexPlane 34.36 0.98 0.02 31.65 0.97 0.04 31.04 0.97 0.04

baseline results, we don’t explore new evaluation metrics.

2.2. D-NeRF Dataset [13].

We have R1 = R2 = R3 = 48 for appearance HexPlane
since it has 360◦ videos. For opacity HexPlane, we set
R1 = R2 = R3 = 24. The bounding box has max bound-
aries [1.5, 1.5, 1.5] and min boundaries [−1.5,−1.5,−1.5].

During training, HexPlane starts with space grid size of
323 and upsamples its resolution at 3k, 6k, 9k to 2003. The
emptiness voxel is calculated at 4k and 10k iterations. Total
training iteration is 25k. The learning rate for feature planes
are 0.02, and learning rate for VRF and neural network is
0.001. All learning rates are exponentially decayed. We use
Adam [5] for optimization with β1 = 0.9, β2 = 0.99. Dur-
ing evaluation, the LPIPS is computed using VGG-Net [14]
following previous works. We show per-scene quantitative
results in Table 2 and visualizations in Figure 3.

2.3. iPhone dataset [4].

2.4. Ablation Details.

For a fair comparison, we fix all settings in ablations.
Volume Basis represents 4D volumes as the weighted sum-
mation of a set of shared 3D volumes as Eq 2 in main paper,
where each 3D volume is represented in Eq 1 format to save
memory. The 3D volume Vt at time t is then:

Vt =

Rt∑
i=1

f(t)i · V̂i

=

Rt∑
i=1

f(t)i(

R1∑
r=1

MXY
r,i ◦ vZr,i ◦ v1

r,i +

R2∑
r=1

MXZ
r,i

◦ vYr,i ◦ v2
r,i +

R3∑
r=1

MY Z
r,i ◦ vXr,i ◦ v3

r,i)

(1)

Similarly, we use a piece-wise linear function to approxi-
mate f(t). In experiments, we set R1 = R2 = R3 = 16 for
appearance HexPlane and R1 = R2 = R3 = 8 for opacity

Figure 2. View Synthesis Results and Depths at Test View on Plenoptic Video Dataset [7].

Figure 3. View Synthesis Results on D-NeRF Dataset [13].

HexPlane. We evaluate Rt = 8, 12, 16 in experiments.
VM-T (Vector, Matrix and Time) uses Eq 3 in main paper
to represent 4D volumes.

Vt =

R1∑
r=1

MXY
r ◦ vZr ◦ v1

r · f1r (t) +
R2∑
r=1

MXZ
r ◦ vYr

◦ v2
r · f2r (t) +

R3∑
r=1

MZY
r ◦ vXr ◦ v3

r · f3r (t)

(2)

We evaluate R1 = R2 = R3 = 24, 48, 96.
CP Decom. (CANDECOMP Decomposition) represents
4D volumes using a set of vectors for each axis.

Vt =

R∑
r=1

vXr ◦ vYr ◦ vZr ◦ vr · fr(t) (3)

vX ,vY ,vZ are feature vectors corresponding to X,Y, Z
axes. We evaluate R = 48, 96, 192, 384 in experiments.

2.5. Fusion Ablations

We provide complete results of fusion ablations in Ta-
ble 3. For Fusion-One and Fusion-Two, we choose one
fusion method from Concat, Sum, and Multiply, and enu-
merate all combinations of fusion methods. Besides that,
we also explore to regress opacities from MLPs like [1]. In
this setting, we sample opacity features, 8-dim feature vec-
tors from HexPlane and regress opacity values from another
MLP. Using MLP to regress opacities could substantially
boost the the results for all designs, at the cost of slower
rendering speeds.

Please also note that we found different fusion designs
expect different weight initializations for feature planes.
For Multiply-Multiply, Concat-Multiply, we initialize fea-
tures with gaussian noise with mean 0.5 and scale 0.9. For
the others, we initialize features with mean 0.0 and scale
0.1. To this end, different fusion designs may expect vari-
ous various hyper-parameter tuning and slight adjustments
to get optimal results. We encounrage readers to explore
these settings and find the best settings for their own appli-
cations.

2.6. Visualization of Feature Planes.

We visualize each channel of XT,ZT feature plane for
opacity HexPlane in Figure 4. This HexPlane is trained in
Flame Salmon scene in Plenoptic Video Dataset [7].

3. Failure Cases
HexPlane doesn’t always give satisfactory results. It

generates degraded results when objects move too fast or
there are too few observations to synthesis details. Figure 5
shows failure cases and corresponding ground-truth images.

4. Failed Designs for Dynamic Scenes
Although HexPlane is a simple and elegant solution, it

is not the instant solution we had for this task. In this sec-
tion, we discuss other designs we tried. These designs could
model the dynamic scenes while their qualities and speeds
are not comparable to HexPlane. We discuss these “failed”
designs, hoping they could inspire future work.

4.1. Fixed Basis for Time Axis

In Eq 2 of main paper, we use f(t) as the coefficients of
basis volumes at time t. Its could be further expressed as:

Vt =

Rt∑
i=1

f(t)i · V̂i = V̂ · f(t) (4)

where the second · is matrix-vector production; V̂ ∈
RXY ZFRt is the stack of {V̂1, . . . , V̂Rt

}; f(t) ∈ RRt is
a function of t. An interesting perspective to understand V̂
is: instead of storing static features with shape RF , every
spatial point in 3D volume contains a feature matrix with
shape RFRt . And feature vectors at specific time t could
be computed by inner product between f(t) and feature ma-
trix. That is, f(t) is a set of basis functions w.r.t to time t
and feature matrix contains coefficients of basis functions
to approximate feature value changes along with time. Fol-
lowing the traditional approach of basis functions for time
series, we use a set of sine/cosine functions as f(t).

While in practice, we found this implementation
couldn’t work since it requires enormous GPU memories.
For instance, with X = Y = Z = 128, Rt = 32, F = 27,
it uses 7GB to store such a representation and around 30GB
during training because of back-propagation and keeping
auxiliary terms of Adam. And it is extremely slow because
of reading/writing values in memories.

Therefore, we apply tensor decomposition to reduce
memory usages by factorizing volumes into matrixes
MXY ,MXZ ,MY Z and vectors vX ,vY ,vZ following Eq
1. Similarly, we add additional Rt dimension to matrixes
M and vectors v, leading to MTXY

r ∈ RXYRT ,vTX
r ∈

RXRT . When calculating features from the representation,
f(t) is first multiplied with MTXY

i and vTX
i along the last

dimension to get M and v at this time steps. We then cal-
culate features using resulted v and M following Eq 1.

f(t) is designed to be like positional encoding, f(t) =
[1, sin(t), cos(t), sin(2 ∗ t), cos(2 ∗ t), sin(4 ∗ t), cos(4 ∗
t), · · ·]. We also try to use Legendre polynomials or Cheby-
shev polynomials to represent f(t). During training, we
use weighted L1 loss to regularize MTr,vTr, and assign
higher weights for high-frequency coefficients to keep re-
sults smooth. We also use the smoothly bandwidth anneal-
ing trick in [11] during training, which gradually introduc-
ing high-frequency components.

Table 3. Ablations on Feature Fusions Designs. We show results with various fusion designs on D-NeRF dataset. HexPlane could work
with other fusion mechanisms, showing its robustness.

Opacity without MLP Regression Opacity with MLP Regression

Fusion-One Fusion-Two PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Multiply
Concat 31.042 0.968 0.039 31.477 0.969 0.037
Sum 31.023 0.967 0.039 31.318 0.969 0.038
Multiply 30.345 0.966 0.041 31.094 0.968 0.038

Sum
Concat 25.428 0.931 0.084 29.240 0.954 0.057
Sum 25.227 0.928 0.090 28.024 0.946 0.067
Multiply 30.585 0.965 0.044 30.934 0.966 0.041

Concat
Concat 25.057 0.928 0.073 30.173 0.961 0.049
Sum 24.915 0.925 0.077 27.971 0.946 0.066
Multiply 30.299 0.965 0.041 30.874 0.971 0.036

This design could model dynamic scenes while it suf-
fers from severe color jittering and distortions. Compared to
HexPlane, it has additional matrix-vector production, which
reduces overall speeds.

4.2. Frequency-Domain Methods

We also tried another method from the frequency do-
main, which is orthogonal to the HexPlane idea. The no-
tations of this section are slightly inconsistent with the no-
tations of the main paper.

According to Fourier Theory, the value at (x, y, z, t)
spacetime point could be represented in its frequency do-
main (we ignore feature dimension here for simplicity):

D(x, y, z, t) =

U∑
u=1

V∑
v=1

W∑
w=1

K∑
k=1

D̃(u, v, w, k) · e−j2π(ux
U + vy

V +wz
W + kt

K)

(5)

D̃ is another 4D volume storing frequency weights, having
the same size as D. Storing D̃ is memory-consuming, and
similarly, we apply tensor decomposition on this volume.

D(x, y, z, t) =

U∑
u=1

V∑
v=1

W∑
w=1

K∑
k=1

R∑
r=1

ṽU (u)r · ṽV (v)r·

ṽW (w)r · ṽK(k)r · e−j2π(
ux
U

+ vy
V

+wz
W

+ kt
K

)

=

U∑
u=1

V∑
v=1

W∑
w=1

K∑
k=1

R∑
r=1

(ṽU (u)r · e−j2π
ux
U)(ṽV (v)r · e−j2π

vy
V)

· (ṽW (w)re
−j2πwz

W) · (ṽK(k)re
−j2π kt

K))

=

R∑
r=1

(

U∑
u=1

ṽU (u)r · e−j2π
ux
U) ·

V∑
v=1

(ṽV (v)r · e−j2π
vy
Y)·

(
W∑
w=1

ṽW (w)re
−j2πwz

W) · (
K∑
k=1

ṽK(k)re
−j2π kt

K)

(6)

where ṽU , ṽV , ṽW , ṽK are the decomposed vectors from
D̃ along U, V,W,K axes using CANDECOMP Decompo-
sition, which axes are related to x, y, z, t in time domain.

Instead of storing the 4D frequency volume and computing
values by traversing all elements inside this volume using
Eq 5, we decompose 4D volumes into many single vectors
and calculate values by summation along each axis, signifi-
cantly reducing computations.

Similarly, we apply weight L1 and smoothly bandwidth
annealing trick on vector weights. We also try wavelet se-
ries instead of Fourier series, and other decompositions. We
found this method leads to less-saturated colors and de-
graded details, which is shown in videos.

Also, this method replaces grid sampling of HexPlane
by inner product, which is less efficient and leads to slow
speeds.

Feature Map Visualization on XY Plane

Feature Map Visualization on ZT Plane

Figure 4. Feature Map Visualization on Flame Salmon Scene.

Synthesis Ground-truth Synthesis Ground-truth

Figure 5. Failure Cases from HexPlane.

References

[1] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16123–16133, 2022. 6

[2] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie
Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard,
Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al.
3d morphable face models—past, present, and future. ACM
Transactions on Graphics (TOG), 39(5):1–38, 2020. 1

[3] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xi-
aopeng Zhang, Wenyu Liu, Matthias Nießner, and Qi Tian.
Fast dynamic radiance fields with time-aware neural voxels.
arXiv preprint arXiv:2205.15285, 2022. 1, 2

[4] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell,
and Angjoo Kanazawa. Monocular dynamic view synthesis:
A reality check. In NeurIPS, 2022. 1, 2, 3

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2, 3

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 2

[7] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521–5531, 2022. 1, 2,
3, 4, 6

[8] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 1

[9] Rafał K Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton
Kaplanyan, Gizem Rufo, Romain Bachy, Trisha Lian, and
Anjul Patney. Fovvideovdp: A visible difference predictor
for wide field-of-view video. ACM Transactions on Graphics
(TOG), 40(4):1–19, 2021. 2

[10] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2

[11] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 1, 6

[12] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 1

[13] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 1, 2, 3, 5

[14] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[15] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv preprint arXiv:2010.07492, 2020. 1

[16] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 2

	. General Discussions
	. Broader Impacts
	. Limitations and Future Directions
	. License

	. Training Details and More Results
	. Plenoptic Video Dataset li2022neural.
	. D-NeRF Dataset pumarola2021d.
	. iPhone dataset gao2022dynamic.
	. Ablation Details.
	. Fusion Ablations
	. Visualization of Feature Planes.

	. Failure Cases
	. Failed Designs for Dynamic Scenes
	. Fixed Basis for Time Axis
	. Frequency-Domain Methods

