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This appendix is organized as follows. First, we present
more details about the baseline mentioned in the main pa-
per. Then we report additional experimental results to fur-
ther validate our network design. At last, some qualitative
results are shown to provide more insights into our IRON.

1. Illustrations of baseline

The schematic illustration of baseline is illustrated in
Figure 1. It contains four consecutive procedures, i.e., fea-
ture extraction, proposal generation, confidence score gen-
eration, and grounding module. Most of the settings have
been illustrated in the main paper and we briefly state them
here again for completeness.
Feature Extraction. The encoded video feature is repre-
sented as v ∈ RT×C , where T is the number of sampled
frames and C is the feature dimension. The query embed-
ding is represented as q ∈ RS×C , where S denotes the total
word length.
Proposal Generation. We follow [11, 12] to conduct the
proposal generation by predicting upon the video-language
fusion results. Firstly, the proposal generation module in-
tegrates the text feature q and the video feature v with a
vanilla Transformer [8]. Then, a set of proposals u ∈ RN×2

is predicted, where N denotes the proposal number. The
corresponding proposal features p ∈ RN×C are generated
by RoI Align.
Confidence Score Generation. We simply use MLPs acti-
vated by sigmoid function to generate proposal-wise con-
fidence scores e ∈ RN×1.
Grounding Module. The baseline model is compatible
with both MIL-based and reconstruction-based grounding
modules. The MIL-based method learns a joint space by
attracting the aligned video-query pairs while repelling the
unmatched pairs. The reconstruction-based method evalu-
ates each proposal by appraising how well it reconstructs
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Figure 1. An overview of baseline. The proposal generation mod-
ule firstly integrates the text feature q and the video feature v with
a vanilla Transformer. Then, a set of proposals u is predicted and
the corresponding proposal features p are generated. Based on
this, proposal-wise confidence scores e ∈ RN×1 are simply pre-
dicted via MLPs. Finally, the grounding module takes confidence
scores e, proposal feature p, and text feature q as input. It can be
implemented with either MIL or query reconstruction (cf . Figure
4 of the main paper).

the entire query. Refer to Sec. 3.3 and Figure 4 of the main
paper for detailed descriptions.

2. More Experiments

Ablation on Semantic & Conceptual Score Generation.
In Eq.(1) of the main paper, the semantic & conceptual
scores are generated via two MLPs and then multiplied by
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Table 1. Ablations on semantic & conceptual generation on
Charades-STA dataset. w/ multiplication denotes the semantic
& conceptual scores are multiplied by the confidence score.

Exp w/ multiplication R1@0.3 @0.5 @0.7

#1 ✓ 70.71 51.84 25.01
#2 ✗ 68.32 50.50 24.11

the confidence score. Here we ablate to cancel the multipli-
cation of the confidence score and modify Eq.(1) as follows.

ek = Sigmoid
(
p ·Wk

e

)
,

sk = Sigmoid
(
p ·Wk

s

)
,

ck = Sigmoid
(
p ·Wk

c

)
,

(1)

where Wk
s ,W

k
e ∈ RC×1 and Wk

c ∈ RC×M are learnable
parameters in the kth iteration as defined in the main paper.

We list the comparison results with (w/ ) and without
(w/o) multiplication on Charades-STA dataset in Table 1.
As expected, the variant with multiplication leads to bet-
ter performance. This may be because the confidence score
is the direct basis for selecting the proposal during the in-
ference process. Therefore, directly multiplying confidence
scores with the semantic & conceptual score is conducive to
generating proposals with both high confidence scores and
high semantic & conceptual scores.
Ablation on Language Encoder. Besides using Distil-
BERT [6], we also conduct experiments using Glove [5] as
the language encoder. The comparison results on Charades-
STA and ActivityNet Captions datasets are summarized in
Table 2 and Table 3, respectively. We can draw the follow-
ing conclusions: 1) Compared to GloVe, DistilBERT is a
better language feature encoder in most cases. For example,
when using MIL for grounding on Charades-STA dataset,
IRON with DistilBERT surpasses the GloVe counterpart
by 0.32% absolute improvement on R1@0.3 (69.43% v.s.
69.11%). 2) With the same Glove language feature en-
coder, our IRON still outperforms the previous state-of-the-
art methods (e.g., CPL [12] and CNM [11]). Since both
CPL and CNM are reconstruction-based methods, we com-
pare them with our reconstruction-based version. For exam-
ple on R1@0.5 of Charades-STA dataset, our IRON outper-
forms CPL by 2.09% (51.33% v.s. 49.24%), demonstrating
the superiority of our method.
Ablations on concept number M . As shown in Figure 2a,
the performance of our IRON is not much sensitive to the
concept number M , and the best performance is achieved at
a medium value (M = 30).
Ablations on iteration number. Here we discuss the in-
fluence of the iteration number K. The results in Figure 2b
show that the performance saturates at K = 4.
Ablations on proposal number. We conduct the ablation
studies on the proposal number N in Figure 2c. As shown,
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Figure 2. Ablations on (a) conceptual number M ; (b) iteration
number K; (c) proposal number N ; and (d) IoU threshold β.

the performance of our IRON reaches the bottleneck when
N > 8. For comparison, we also list the performance of
CPL [12] with the number of proposals. The results show
that our IRON performs better at different values of N .
Ablations on IoU similarity threshold. We ablate on the
IoU similarity threshold β. In Figure 2d, we can see that
setting β to 0.6 obtains the best performance. Too small β
value will result in overabundant proposals being marked as
positive, i.e., generating false positive samples. Similarly,
too large β value leads to false negative results.

3. Visualizations
Concept Set Visualizations. The used concept set of
Charades-STA and ActivityNet Captions datasets are shown
in Table 4 and Table 5, respectively.
Long-tailed Distribution Visualizations. We found that
a potential advantage brought by semantic distillation is
that it can alleviate the phenomenon of long-tailed distribu-
tion. To demonstrate this, we select the thirty most frequent
verbs, and separately evaluate the performance of the query
sentences containing them. In Figure 3, we list the per-
action R1@0.5 values on Charades-STA [7] test set. The
actions (i.e., verbs) are sorted according to their frequency.
As shown, IRON without semantic distillation shows a typi-
cal long-tailed distribution, where the low frequency actions
have much low performance. In contrast, our IRON leads
to a relatively more even distribution.

Besides, we also visualize the ground truth distributions
and prediction results for model variants with and with-
out semantic distillation loss, respectively. Specifically,
we visualize four high frequency actions (“open”, “put”,
“take”, and “eat”) in Figure 4 and four low frequency



Table 2. Comparison results (%) with DistilBERT [6] and Glove [5] language encoder on Charades-STA dataset. IRON∗ uses MIL
for grounding and IRON follows the reconstruction strategy.

Method Text Encoder R1@0.3 @0.5 @0.7 R5@0.3 @0.5 @0.7

IRON∗ (Ours) DistilBERT 69.43 50.90 24.32 97.43 85.92 54.06
IRON∗ (Ours) Glove 69.11 50.17 23.94 97.50 85.39 53.95
IRON (Ours) DistilBERT 70.71 51.84 25.01 98.96 86.80 54.99
IRON (Ours) Glove 70.28 51.33 24.71 98.25 86.35 54.93
CNM [11] Glove 60.39 35.43 15.45 - - -
CPL [12] Glove 66.40 49.24 22.39 96.99 84.71 52.37

Table 3. Comparison results (%) with DistilBERT [6] and Glove [5] language encoder on ActivityNet Captions dataset. IRON∗ uses
MIL for grounding and IRON follows the reconstruction strategy.

Method Text Encoder R1@0.1 @0.3 @0.5 R5@0.1 @0.3 @0.5

IRON∗ (Ours) DistilBERT 82.83 56.81 33.67 95.09 83.46 67.38
IRON∗ (Ours) Glove 82.25 56.56 33.43 94.78 83.11 67.30
IRON (Ours) DistilBERT 84.42 58.95 36.27 96.74 85.60 68.52
IRON (Ours) Glove 84.13 58.57 36.04 96.25 85.32 68.44
CNM [11] Glove 78.13 55.68 33.33 - - -
CPL [12] Glove 82.55 55.73 31.37 87.24 63.05 43.13

Table 4. Concept set of Charades-STA dataset, i.e., the top-30
high frequent verbs, adjectives and nouns in the training set of
Charades-STA dataset.

Rank Word Frequency Rank Word Frequency

#1 person 12373 #2 put 1522
#3 open 1502 #4 door 1270
#5 take 1172 #6 eat 953
#7 close 819 #8 sit 776
#9 light 631 #10 glass 623
#11 hold 592 #12 drink 569
#13 turn 555 #14 throw 523
#15 run 507 #16 book 499
#17 bag 459 #18 table 456
#19 shoe 451 #20 sandwich 449
#21 chair 438 #22 food 434
#23 start 426 #24 cabinet 424
#25 laptop 408 #26 box 404
#27 window 398 #28 begin 384
#29 cloth 372 #30 cup 353

actions (“fix”, “cook”, “play”, and “get”) in Figure 5.
The ground truth is plotted by green density distribution
while the prediction results are plotted by red points. We
can observe that the proposed semantic distillation can ef-
fectively rectify the prediction results, especially for low
frequency actions.

We explain this from two aspects. Firstly, the pre-trained
VL models have shown great transfer potential in open-
vocabulary detection [1, 3], few-shot learning [2, 10], and
zero-shot learning [4, 9]. Therefore, distilling the knowl-
edge from these pre-trained VL models can naturally benefit

Table 5. Concept set of ActivityNet Captions dataset, i.e., the
top-30 high frequent verbs, adjectives and nouns in the training set
of ActivityNet Captions dataset.

Rank Word Frequency Rank Word Frequency

#1 man 9455 #2 woman 4108
#3 people 3879 #4 camera 3610
#5 play 2902 #6 shown 2829
#7 stand 2705 #8 seen 2334
#9 person 2174 #10 continue 2051
#11 talk 2046 #12 walk 2025
#13 see 1917 #14 girl 1915
#15 hold 1793 #16 begin 1731
#17 ball 1683 #18 hand 1673
#19 sever 1626 #20 put 1608
#21 men 1601 #22 show 1596
#23 sit 1535 #24 water 1518
#25 jump 1486 #26 boy 1478
#27 screen 1353 #28 end 1314
#29 speak 1281 #30 move 1267

the long-tailed issue since it can be viewed as a weaker ver-
sion of open-vocabulary detection. Secondly, the proposal-
wise semantic distillation targets provide explicit and dis-
tinctive clues for proposal updates. This additional supervi-
sion information does not depend on the distribution of the
overall dataset, thus alleviating the long-tailed performance.
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Figure 3. The R1@0.5 performance of the top-30 high frequent actions (i.e., verbs) on Charades-STA dataset. IRON without semantic
distillation shows a long-tailed distribution while our IRON alleviates this to some extent.
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Figure 4. Visualizations of the ground truth distribution and prediction results for high frequency actions including “open”, “put”,
“take”, and “eat”. We visualize the results for IRON and IRON without semantic distillation loss Lsem, respectively.
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Figure 5. Visualizations of the ground truth distribution and prediction results for low frequency actions including “fix”, “cook”,
“play”, and “get”. We visualize the results for IRON and IRON without semantic distillation loss Lsem, respectively.

ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3313–3322, 2022. 3

[10] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer
Singh. Calibrate before use: Improving few-shot perfor-
mance of language models. In International Conference on
Machine Learning, pages 12697–12706. PMLR, 2021. 3

[11] Minghang Zheng, Yanjie Huang, Qingchao Chen, and Yang
Liu. Weakly supervised video moment localization with con-
trastive negative sample mining. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 1, page 3,
2022. 1, 2, 3

[12] Minghang Zheng, Yanjie Huang, Qingchao Chen, Yuxin
Peng, and Yang Liu. Weakly supervised temporal sentence
grounding with gaussian-based contrastive proposal learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15555–15564,
2022. 1, 2, 3


	. Illustrations of baseline
	. More Experiments
	. Visualizations

