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This supplementary material provides more details and
analysis of our method, as listed below.
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A. Analysis of TSC loss
This section provides more details about our modifica-

tion for TSC loss to account for the ±π2 ambiguity in po-
larimetric azimuth observations, discusses the necessity of
considering multi-view consistency, and provides more de-
tails and an efficiency analysis of our visibility determina-
tion strategy.

A.1. Accounting for ±π2 ambiguity in TSC loss

We modify our TSC loss to account for±π2 ambiguity in
polarimetric observations. Given an observed polarimetric
phase angle φ̂, the surface azimuth angle φ is either φ̂ ±π2
or φ̂(= φ̂ + π) depending on whether the surface point is
polarimetric specular or diffuse reflection dominated [4,13].
Unfortunately, labeling the specular or diffuse domination
is non-trivial [4, 5, 19, 20]. In our approach, although TSC
is invariant to π ambiguity, the ±π2 ambiguity still requires
specific handling for polarimetric observations.
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Figure 11. Accounting for the±π
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ambiguity in TSC loss resolves
the twisted surface problem. The results by dealing with the ±π

2

ambiguity are presented in the main paper Fig. 11.

Our idea is to allow both possibilities in the TSC loss.
The ±π2 ambiguity introduces one more candidate tangent
vector, and the surface normal should be perpendicular to
either of the vectors deduced from π or ±π2 phase angles.
By main paper’s Eq. (6), the projected tangent vector t′

from the ±π2 phase angle is
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(21)
Because t′ is also parallel to the image plane, t′ can be ob-
tained by rotating t by±π2 in the image plane. At this point,
however, we cannot fully determine which vector, t or t′, is
the actual tangent vector. We only know that the surface
normal is perpendicular to either of the vectors:

n ⊥ t or n ⊥ t′. (22)

https://github.com/xucao-42/mvas


w/o multiview
consistency

w/ multiview
consistency

GT

Figure 12. Considering multiview consistency resolves the
convex-concave ambiguity because it encourages accurate corre-
spondence.

Putting together the notations in the main paper’s Eqs. (12)
and (17), we can rewrite our TSC loss as

LTSC =
1

P

∑
x∈X

∑C
i=1 Φi

(
n>ti

)2∑C
i=1 Φi

. (23)

Based on Eq. (22), we modify Eq. (23) as

L′TSC =
1

P

∑
x∈X

∑C
i=1 Φi

(
n>ti

)2 (
n>t′i

)2∑C
i=1 Φi

. (24)

The modified TSC loss allows the surface normal to be per-
pendicular to either of the two candidate tangent vectors.

Figure 11 shows that this strategy yields better recon-
struction quality, which gives us the results presented in the
main paper’s Fig. 10. If we do not deal with ±π2 ambiguity,
the recovered shapes appear twisted due to wrong tangent
vectors (i.e., rotated by ±π2 from actual tangent vectors in
the image space).

A.2. Ablation study on multi-view consistency

Accumulating projected tangent vectors from all visible
views to compute the TSC loss is necessary for accurate
shape recovery. Without considering multi-view consis-
tency, we can simplify our original TSC loss from Eq. (23)
to

L
′′

TSC =
1

P

∑
x∈X

(n(x)>t(φ(Π(x))))2, (25)

where the projected tangent vector t is computed from the
input pixel location, and visibility or tangent vectors in
other views need no longer be considered.

This simplified loss Eq. (25), however, can lead to
convex-concave ambiguity in the recovered surfaces, as
shown in Fig. 12. Without multi-view consistency, the tan-
gent vector from one view can only constrain the surface
normal loosely on a plane and cannot constrain the surface
positions correctly. Therefore, locally concave or convex
surfaces with the same tangent vectors can both minimize
the simplified loss, thus resulting in the ambiguity.
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Figure 13. Visibility determination via reverse sphere tracing. We
march a surface point x0 towards the camera center. At each step,
the marching distance is the signed distance f(xt) from the cur-
rent point xt to the surface, which requires one MLP evaluation.
(Left) The marching diverges quickly towards the camera if x0 is
visible. (Right) The marching converges to another surface point
as ordinary sphere tracing [6] if x0 is occluded.
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Figure 14. The distribution of marching steps required to deter-
mine the visibility of surface points of the DiLiGenT-MV object
“Buddha” [10]. On average, 16 MLP evaluations are required per
surface point per view over the training.

A.3. More details on visibility determination

We determine the visibility of a surface point in a view
by marching the point toward the corresponding camera,
i.e., performing sphere tracing [6] in the reverse direction.

We consider four conditions when marching the surface
point. Initially, we push the surface point x0 by a tiny dis-
tance (1× 10−3 in our experiments) to the camera. (1) The
surface point is invisible if the signed distance becomes neg-
ative, as the marching direction is towards inside the sur-
face. As long as the marching point is outside the surface,
we move the point xt at step t by a distance f(xt) towards
the camera. The surface point is (2) visible if the march-
ing point goes beyond the camera center (Fig. 13 left) or
(3) invisible if the marching point hits another surface point
(Fig. 13 right). (4) We treat the surface point as invisible if
the marching is not terminated within certain steps.

This strategy is advantageous in both efficiency and ac-
curacy compared to other visibility determination strategies
used in neural rendering methods. First, it avoids densely
evaluating an MLP on the point-to-camera rays [7,18]. The
marching quickly terminates and only requires a few MLP
evaluations, e.g., 16 MLP evaluations on average ( Fig. 14).
Second, it does not rely on the visibility predicted by an
additional trainable MLP [15].



B. Evaluation on DiLiGenT-MV
This section provides more details of our evaluation

metrics, additional visual comparisons on DiLiGenT-MV
benchmark [10], and investigates the effect of number of
input viewpoints.

B.1. More details on evaluation metrics

The definition of our evaluation metrics follow [8,9]. We
present their definitions here for completeness.

Chamfer distance Chamfer distance measures the point-
set-to-point-set distance by accumulating the point-to-
point-set distances. Given two point sets χ1, and χ2, the
distance from a point to another point set is defined as

dx1→χ2
= min

x2∈χ2

‖x1 − x2‖2 and

dx2→χ1 = min
x1∈χ1

‖x1 − x2‖2.
(26)

The Chamfer distance d(χ1, χ2) is then

d(χ1, χ2) =
1

2|χ1|
∑

x1∈χ1

dx1→χ2
+

1

2|χ2|
∑

x2∈χ2

dx2→χ1
.

(27)

F-score F-score considers both the precision and recall of
the recovered surfaces to the GT surfaces. The precision
and recall are defined based on the point-to-point-set dis-
tances as

P =
1

|χ1|
∑

x1∈χ1

[dx1→χ2
< τ ] and

R =
1

|χ2|
∑

x2∈χ2

[dx2→χ1 < τ ].

(28)

Here, [·] is the Iverson bracket, and τ is the distance thresh-
old for a point to be considered close enough to a point set.
The F-score then takes the geometric average of precision
and recall:

F =
2PR
P +R

. (29)

We set τ = 0.5 mm in our evaluations.
As mentioned in the main paper, our evaluation takes the

first ray-surface intersection points from all views as the in-
put point sets to the Chamfer distance and F-score. This
puts more focus on evaluating visible surface regions in in-
put images and avoids a heuristic crop of the surface [8].

Our evaluation metrics do not consider the cleanness of
inner space (i.e., correctness of inner topology) of the re-
covered surfaces. To assess how accurate the inner space of
the surfaces is, we visualize the inner space of the mesh in
Fig. 15. The visualization shows that our method does not
produce unwilling structures inside recovered meshes.

Bear Buddha Cow Pot2 Reading

Figure 15. Visualization of the inner space of our recovered sur-
faces (cut in half vertically). We consider that our evaluation of
shape accuracy using visible surface points is fair because the in-
ner space is clean. No post-processing is performed on the meshes
after we extract them using marching cubes [11].
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Figure 16. More visual comparisons of recovered shapes of
DiLiGenT-MV [10] objects “Bear,”“Cow,” and “Pot2.”

B.2. Additional visual comparisons

Figures 16 and 17 show the visual comparisons on
DiLiGenT-MV objects [10] in addition to the ones pre-
sented in the main paper’s Figs. (7) and (8). Our method
consistently recovers accurate and detailed shapes and nor-
mals.

Figure 18 shows the comparison of surface normals to
PS-NeRF [15] from the 5 unseen viewpoints during the
training. PS-NeRF [15] use the 15-view SDPS normal
maps [3] to initialize shapes, therefore sharing the same ac-
cess to underlying azimuth information as ours. The com-
parison verifies that accurate shape and normal recovery can
be realized using only azimuth maps without developing the
rendering process for the multi-view case.

B.3. The effect of number of viewpoints

MVAS is robust to sparse view input. As shown in Tab. 3
and Fig. 19, we evaluate the shape and normal recovery ac-
curacy by gradually reducing the number of input views.
Figure 19 shows that using as few as 5-view azimuth maps
can still achieve detailed reconstruction, while large errors
are observed mainly at heavily occluded regions.
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Figure 17. More visual comparisons of recovered normal maps
and angular error maps from the first view of DiLiGenT-MV [10]
objects “Bear,” “Buddha,” and “Cow.”

Table 3. Effect of the number of views used for shape and normal
recovery. MAE is averaged over {5, 10, 12, 14, 15} unseen views,
respectively.

Metrics 15 10 8 6 5

CD (↓) 0.357 0.372 0.449 0.424 0.422
F-score (↑) 0.754 0.739 0.648 0.702 0.715
MAE (↓) 9.90 10.80 12.23 13.35 14.25

C. Implementation details
This section describes the architecture of our neural SDF,

the training details, and the camera normalization process.

C.1. Neural network architecture

Following IDR [17], our neural SDF consists of a posi-
tional encoding layer [12] followed by an 8-layer MLP, as
shown in Fig. 20. The positional encoding layer is defined
as

γ(x) = [sin(20πx), cos(20πx), ...,

sin(2L−1πx), cos(2L−1πx)].
(30)

We use L = 10 in our experiments. The input position x
and γ(x) are skip-connected to the 4-th layer of the MLP.
For the activation functions in the MLP, we use the softplus
function

softplus(x) =
1

β
log (1 + exp(βx)) (31)

with β = 100.
The neural SDF shown in Fig. 20 is the only MLP we op-

timize. Unlike recent works using additional rendering net-
works to model surface light field [16,17] or reflectance [15]
for computing re-rendering loss, multi-view azimuth maps
directly regularize the geometry and eliminate the necessity
to model a rendering process.

C.2. Training details

We initialize the MLP parameters such that the initial
zero level set approximates a sphere with a radius 0.6 [2].
We set λ1 = 100 and λ2 = 0.1 for the loss func-
tion. ADAM optimizer is used with an initial learning rate
1 × 10−4. We optimize the MLP parameters for 50 epochs
with a batchsize 4096 pixels. The learning rate and α in
silhouette loss are divided by 2 every 10 epochs.

As most pixels from the input images are outside silhou-
ette, randomly sampling from all pixels can be inefficient
for training. To improve the efficiency, we dilate the sil-
houette (i.e., the boundary of the mask) for 30 times and
sample pixels from the expanded regions as input. For
DiLiGenT-MV [10] objects, we use their provided masks.
For PANDORA [5] and our captured images, we use an
automatic image background removal tool [1] to generate
the masks. The input image dimensions are 612 × 512 for
DiLiGenT-MV [10], 1224 × 1024 for PANDORA [5], and
1566× 1045 for our objects.

The training took about 3 hours per DiLiGenT-MV ob-
ject [10], about 7 hours per PANDORA object [5], and
about 10 hours for our captured objects using one GTX
2080Ti graphics card. As a comparison, PS-NeRF took
about 22 hours to train one DiLiGenT-MV object [15]. It
took us about 30 hours to reproduce PANDORA results per
object [5].

C.3. Camera normalization

Following VolSDF [16], we normalize the world coordi-
nates such that the object is bounded by a unit sphere. As we
cannot know the shape and its center position beforehand,
we approximate the object center location by the position
that is closet to all camera principle axes. This approxima-
tion assumes all cameras surrounding the target scene and
is satisfied in our experiments. We present the computa-
tion details here because we do not find such details in the
VolSDF paper [16]. The normalization is done by shifting
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Figure 18. Visual comparisons to PS-NeRF [15] of the 5 unseen views over the training.
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Figure 19. Surface and normal recovery results using different number of viewpoints. From top to bottom: input viewpoints, front and
back views of recovered shapes, front and back normal maps, front and back angular error maps, and MAEs in corresponding views. It can
be seen that MVAS is robust to sparse view inputs. Most surface details are still distinguishable using as few as 5-view azimuth maps.
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Figure 20. Our network consists of a positional encoding
layer γ(·) and an 8-layer MLP with softplus activation functions.
A skip connection is added to the 4-th layer from the input. This
is the only network we optimize.

and then scaling the camera center locations:

oi ←
oi − xo

s
. (32)

Here, oi is the i-th camera’s center location in the world
coordinates, xo and s are the global offset and scale factor
to be detailed in the following.

Camera centers’ offset The offset applied to all camera
center locations can be computed using a linear system.
Formally, let oi ∈ R3 and zi ∈ S2 ⊂ R3 be the i-th cam-
era’s center location and its principle axis direction in the
world coordinates, respectively. The principle axis can then
be represented as xi(t) = oi + tzi with t ∈ R+. The short-
est squared Euclidean distance from a point x ∈ R3 to this
principle axis is

d2 (x,xi(t)) = min
t
‖x− xi(t)‖22

= (x− oi)
>(x− oi)−

(
(x− oi)

>zi
)2

= x>Zix− 2o>i Zix + o>i Zioi,
(33)

where Zi = I−ziz
>
i . To approximate the object center, we

find the point that is the closest to all camera principle axes:

xo = argmin
x

∑
i

d2 (x,xi(t))

= x>

(
C∑
i=1

Zi

)
x− 2

(
C∑
i=1

o>i Zi

)
x +

C∑
i=1

o>i Zioi.

(34)



The global optimum xo is attained by solving the following
normal equation of Eq. (34):

A>Ax = A>b

with A =

C∑
i=1

Zi, b =

C∑
i=1

Zioi
(35)

Camera centers’ scale After centering the scene, we ap-
ply a global scale to all camera center locations to ensure
a unit sphere bounds the scene. We assume that all cam-
eras surround the object. Then we can compute the global
scale factor as the maximal camera center norm scaled by a
suitable value sr:

s = max{‖oi − xo‖2}/sr. (36)

We chose sr such that it is slightly larger than the ratio
of the camera-to-object distance to the object size. For
DiLiGenT-MV [10] objects, we set sr = 10 as they are cap-
tured about 1.5 m away from about 20 cm height objects.
For PANDORA [5] and our objects, we set sr = 3.
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