
A. Velocity Direction Variance in OCM
In this section, we work on the setting of linear motion

with noisy states. We provide proof that the trajectory di-
rection estimation has a smaller variance if the two states
we use for the estimation have a larger time difference. We
assume the motion model is xt = f(t) + ϵ where ϵ is gaus-
sian noise and the ground-truth center position of the target
is (µut , µvt) at time step t. Then the true motion direction
between the two time steps is

θ = arctan(
µvt1
− µvt2

µut1
− µut2

). (9)

And we have |µvt1
− µvt2

| ∝ |t1 − t2|, |µut1
− µut2

| ∝
|t1 − t2|. As the detection results do not suffer from the
error accumulation due to propagating along Markov pro-
cess as Kalman filter does, we can assume the states from
observation suffers some i.i.d. noise, i.e., ut ∼ N (µut

, σ2
u)

and vt ∼ N (µvt , σ
2
v). We now analyze the noise of the

estimated θ̃ =
vt1

−vt2
ut1−ut2

by two observations on the trajec-
tory. Because the function of arctan(·) is monotone over
the whole real field, we can study tan θ̃ instead which sim-
plifies the analysis. We denote w = ut1−ut2 , y = vt1−vt2 ,
and z = y

w , first we can see that y and w jointly form a
Gaussian distribution:[

y
w

]
∼ N

([
µy

µw

]
,

[
σ2
y ρσyσw

ρσyσw σ2
w

])
, (10)

where µy = µvt1
− µvt2 , µw = µut1

− µut2
, σw =

√
2σu

and σy =
√
2σv , and ρ is the correlation coefficient be-

tween y and w. We can derive a closed-form solution of the
probability density function [24] of z as

p(z) =
g(z)e

g(z)2−αr(z)2

2β2r(z)2

√
2πσwσyr(z)3

[
Φ

(
g(z)

βr(z)

)
− Φ

(
− g(z)

βr(z)

)]
+

βe−2α/β

πσwσyr(z)2

(11)
where

r(z) =

√
z2

σ2
y

− 2ρz

σyσw
+

1

σ2
w

,

g(z) =
µyz

σ2
y

− ρ(µy + µwz)

σyσw
+

µw

σ2
w

,

α =
µ2
w + µ2

y

σ2
y

− 2ρµyµw

σwσy
, β =

√
1− ρ2,

(12)

and Φ is the cumulative distribution function of the standard
normal. Without loss of generality, we can assume µw > 0
and µy > 0 because negative ground-truth displacements
enjoy the same property. This solution has a good property

that larger µw or µy makes the probability density at the
true value, i.e. µz =

µy

µw
, higher, and the tails decay more

rapidly. So the estimation of arctan θ, also θ, has smaller
noise when µw or µy is larger. Under the assumption of
linear motion, we thus should select two observations with
a large temporal difference to estimate the direction.

It is reasonable to assume the noise of detection along
the u-axis and v-axis are independent so ρ = 0. And when
representing the center position in pixel, it is also moderate
to assume σw = σy = 1 (also for the ease of presentation).
Then, with different true value of µz =

µy

µw
, the visualiza-

tions of p(z) over z and µy are shown in Figure 5. The
visualization demonstrates our analysis above. Moreover, it
shows that when the value of µy or µw is small, the clus-
ter peak of the distribution at µz is not significant anymore,
as the noise σy and σw can be dominant. Considering the
visualization shows that happens when µy is close to σy ,
this can happen when we estimate the speed by observations
from two consecutive frames because the variance of obser-
vation can be close to the absolute displacement of object
motion. This makes another support to our analysis in the
main paper about the sensitivity to state estimation noise.

B. Interpolation by Gaussian Progress Regres-
sion

Interpolation as post-processing. Although we focus on
developing an online tracking algorithm, we are also in-
terested in whether post-process can further optimize the
tracking results in diverse conditions. Despite the failure of
GPR in online tracking in Table 6, we continue to study if
GPR is better suited for interpolation in Table 8. We com-
pare GPR with the widely-used linear interpolation. The
maximum gap for interpolation is set as 20 frames and we
use the same kernel for GPR as mentioned above. The re-
sults suggest that the GPR’s non-linear interpolation is sim-
ply not efficient. We think this is due to limited data points
which results in an inaccurate fit of the object trajectory.
Further, the variance in regressor predictions introduces ex-
tra noise. Although GPR interpolation decreases the perfor-
mance on MOT17-val significantly, its negative influence
on DanceTrack is relatively minor where the object motion
is more non-linear. We believe how to fit object trajectory
with non-linear hypothesis still requires more study.

From the analysis in the main paper, the failure of
SORT can mainly result from occlusion (lack of observa-
tions) or the non-linear motion of objects (the break of the
linear-motion assumption). So the question arises naturally
whether we can extend SORT free of the linear-motion as-
sumption or at least more robust when it breaks.

One way is to extend from KF to non-linear filters, such
as EKF [30, 52] and UKF [28]. However, for real-world
online tracking, they can be hard to be adopted as they

(a) µz = 0.1 (b) µz = 0.5 (c) µz = 2 (d) µz = 5

Figure 5. The probability density of z = tan θ under different true value of z, i.e. µz =
µy

µw
. We set µy and z as two

variables. It shows that under different settings of true velocity direction when µy is smaller, the probability of estimated
value with a significant shift from the true value is higher. As µy is proportional to the time difference of the two selected
observations under linear motion assumption, it relates to the case that the two steps for velocity direction estimation has a
shorter time difference.

Table 8. Ablation study about the interpolation post-processing.
MOT17-val DanceTrack-val

HOTA↑ AssA↑ MOTA↑ IDF1↑ HOTA↑ AssA↑ MOTA↑ IDF1↑

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 68.0 69.9 77.9 79.3 52.8 35.6 89.8 52.1
GPR Interpolation 65.2 67.0 72.9 75.9 51.6 35.0 86.1 51.2

need knowledge about the motion pattern or still rely on the
techniques fragile to non-linear patterns, such as lineariza-
tion [29]. Another choice is to gain the knowledge beyond
linearity by regressing previous trajectory, such as combing
Gaussian Process (GP) [32, 47, 62]: given a observation z⋆
and a kernel function k(·, ·), GP defines gaussian functions
with mean µz⋆

and variance Σz⋆
as

µz⋆
= k⊤

⋆ [K+ σ2I]−1y,

Σz⋆
= k(z⋆, z⋆)− k⊤

⋆ [K+ σ2I]−1k⋆,
(13)

where k⋆ is the kernel matrix between the input and train-
ing data and K is the kernel matrix over training data, y is
the output of data. Until now, we have shown the primary
study of using Gaussian Process Regression (GPR) in the
online generation of the virtual trajectory in ORU and of-
fline interpolation. But neither of them successfully boosts
the tracking performance. Now, We continue to investigate
in detail the chance of combining GPR and SORT for multi-
object tracking for interpolation as some designs are worth
more study.

B.1. Choice of Kernel Function in Gaussian Process

The kernel function is a key variable of GPR. There is
not a generally efficient guideline to choose the kernel for
Gaussian Process Regression though some basic observa-
tions are available [15]. When there is no additional knowl-
edge about the time sequential data to fit, the RBF kernel is
one of the most common choices:

k(x,x′) = σ2exp
(
−||x− x′||2

2l2

)
, (14)

where l is the lengthscale of the data to be fit. It determines
the length of the “wiggles” of the target function. σ2 is the
output variance that determines the average distance of the
function away from its mean. This is usually just a scale
factor [15]. GPR is considered sensitive to l in some situa-
tions. So we conduct an ablation study over it in the offline
interpolation to see if we can use GPR to outperform the
linear interpolation widely used in multi-object tracking.

B.2. GPR for Offline Interpolation

We have presented the use of GPR in online virtual tra-
jectory fitting and offline interpolation where we use l2 =
25 and σ = 1 for the kernel in Eq. 14. Further, we make a
more thorough study of the setting of GPR. We follow the
settings of experiments in the main paper that only trajec-
tories longer than 30 frames are put into interpolation. And
the interpolation is only applied to the gap shorter than 20
frames. We conduct the experiments on the validation sets
of MOT17 and DanceTrack.

For the value of l, we try fixed values, i.e. l = 1 and
l = 5 (2l2 = 50), value adaptive to trajectory length, i.e.
l = Lτ and l = 1000/Lτ , and the value output by Median
Trick (MT) [18]. The training data is a series of quater-
nary [u, v, w, h], normalized to zero-mean before being fed
into training. The results are shown in Table 9. Linear in-
terpolation is simple but builds a strong baseline as it can
stably improve the tracking performance concerning multi-
ple metrics. Directly using GPR to interpolate the missing
points hurts the performance and the results of GPR are not
sensitive to the setting of l.

Table 9. Ablation study about using Gaussian Process Regression for object trajectory interpolation. LI indicates Linear
Interpolation, which is used to interpolate the trajectory before smoothing the trajectory by GPR. MT indicates Median Trick
for kernel choice in regression. Lτ is the length of trajectory.

MOT17-val DanceTrack-val

Interpolation Method HOTA AssA MOTA IDF1 HOTA AssA MOTA IDF1

w/o interpolation 66.5 68.9 74.9 77.7 52.1 35.3 87.3 51.6
Linear Interpolation 69.6 69.9 77.9 79.3 52.8 35.6 89.8 52.1

GPR Interp, l = 1 66.2 67.6 74.3 76.6 51.8 35.0 86.6 50.8
GPR Interp, l = 5 66.3 67.0 72.9 75.9 51.8 35.1 86.5 51.1
GPR Interp, l = Lτ 66.1 67.0 73.1 77.8 51.6 35.1 86.4 50.7
GPR Interp, l = 1000/Lτ 65.9 67.0 73.0 77.8 51.8 35.0 86.9 51.0
GPR Interp, l = MT(τ) 65.9 67.0 73.1 77.8 51.7 35.1 86.7 50.9

LI + GPR Smoothing, l = 1 69.5 69.6 77.8 79.3 52.8 35.6 89.9 52.1
LI + GPR Smoothing, l = 5 69.5 69.7 77.8 79.3 52.9 34.9 89.7 52.1
LI + GPR Smoothing, l = Lτ 69.6 69.5 77.8 79.2 52.9 35.6 89.9 52.1
LI + GPR Smoothing, l = 1000/Lτ 69.5 69.9 77.8 79.3 53.0 35.6 89.9 52.1
LI + GPR Smoothing, l = MT(τ) 69.5 69.6 77.8 79.3 52.8 35.6 89.8 52.1

Table 10. Results on CroHD Head Tracking dataset [56]. Our method uses the detections from HeadHunter [56] or Fair-
MOT [71] to generate new tracks.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓

HeadHunter [56] 36.8 57.8 53.9 5.18 30.0 4,394 15,146
HeadHunter dets + OC-SORT 39.0 60.0 56.8 5.18 28.1 4,122 10,483

FairMOT [71] 43.0 60.8 62.8 11.8 19.9 12,781 41,399
FairMOT dets + OC-SORT 44.1 67.9 62.9 10.2 16.4 4,243 10,122

Table 11. Results on DanceTrack test set. “Ours (MOT17)”
uses the YOLOX detector trained on MOT17-training set.

Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

SORT 47.9 72.0 31.2 91.8 50.8
OC-SORT 55.1 80.3 38.0 89.4 54.2
OC-SORT (MOT17) 48.6 71.0 33.3 84.2 51.5

There are two reasons preventing GPR from accurately
interpolating missing segments. First, the trajectory is usu-
ally limited to at most hundreds of steps, providing very
limited data points for GPR training to converge. On the
other hand, the missing intermediate data points make the
data series discontinuous, causing a huge challenge. We
can fix the second issue by interpolating the trajectory with
Linear Interpolation (LI) first and then smoothing the inter-
polated steps by GPR. This outperforms LI on DanceTrack
but still regrades the performance by LI on MOT17. This is
likely promoted by the non-linear motion on DanceTrack.
By fixing the missing data issue of GPR, GPR can have a
more accurate trajectory fitting over LI for the non-linear
trajectory cases. But considering the outperforming from
GPR is still minor compared with the Linear Interpolation-
only version and GPR requires much heavier computation
overhead, we do not recommend using such a practice in
most multi-object tracking tasks. More careful and deeper
study is still required on this problem.

C. Results on More Benchmarks

Results on HeadTrack [56]. When considering tracking
in the crowd, focusing on only a part of the object can
be beneficial [6] as it usually suffers less from occlusion
than the full body. This line of study is conducted over
hand tracking [40, 50], human pose [66] and head track-
ing [2, 43, 56] for a while. Moreover, with the knowl-
edge of more fine-grained part trajectory, it can be useful
in downstream tasks, such as action recognition [16, 17]
and forecasting [7, 9, 31, 33]. As we are interested in the
multi-object tracking in the crowd, we also evaluate the pro-
posed OC-SORT on a recently proposed human head track-
ing dataset CroHD [56]. To make a fair comparison on
only the association performance, we adopt OC-SORT by
directing using the detections from existing tracking algo-
rithms. The results are shown in Table 10. The detections
of FairMOT [71] and HeadHunter [56] are extracted from
their tracking results downloaded from the official leader-
board 2. We use the same parameters for OC-SORT as on
the other datasets. The results suggest a significant track-
ing performance improvement compared with the previous
methods [56, 71] for human body part tracking. But the
tracking performance is still relatively low (HOTA=∼ 40).
It is highly related to the difficulty of having accurate de-
tection of tiny objects. Some samples from the test set of
HeadTrack are shown in the first two rows of Figure 6.

2https://motchallenge.net/results/Head Tracking 21/

Table 12. Results on MOT17 test set with the public detections. LI indicates Linear Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

CenterTrack [73] - 61.5 59.6 1.41 20.1 2,583 - - -
QDTrack [42] - 64.6 65.1 1.41 18.3 2,652 - - -
Lif T [25] 51.3 60.5 65.6 1.50 20.7 1,189 3,476 54.7 59.0
TransCt [67] 51.4 68.8 61.4 2.29 14.9 4,102 8,468 47.7 52.8
TrackFormer [39] - 62.5 60.7 3.28 17.5 2,540 - - -

OC-SORT 52.4 58.2 65.1 0.44 23.0 784 2,006 57.6 63.5
OC-SORT + LI 52.9 59.4 65.7 0.66 22.2 801 1,030 57.5 63.9

Table 13. Results on MOT20 test set with the public detections. LI indicates Linear Interpolation.

Tracker HOTA↑ MOTA↑ IDF1↑ FP(104)↓ FN(104)↓ IDs↓ Frag↓ AssA↑ AssR↑

MPNTrack [4] 46.8 57.6 59.1 17.0 20.1 1,210 1,420 47.3 52.7
TransCt [67] 43.5 61.0 49.8 4.92 14.8 4,493 8,950 36.1 44.5
ApLift [26] 46.6 58.9 56.5 1.77 19.3 2,241 2,112 45.2 48.1
TMOH [53] 48.9 60.1 61.2 3.80 16.6 2,342 4,320 48.4 52.9
LPC MOT [13] 49.0 56.3 62.5 1.17 21.3 1,562 1,865 52.4 54.7

OC-SORT 54.3 59.9 67.0 0.44 20.2 554 2,345 59.5 65.1
OC-SORT + LI 55.2 61.7 67.9 0.57 19.2 508 805 59.8 65.9

Public Tracking on MOT17 and MOT20. Although we
use the same object detectors as some selected baselines,
there is still variances in detections when compared with
other methods. Therefore, we also report with the public
detections on MOT17/MOT20 in Table 12 and Table 13.
OC-SORT still outperforms the existing state-of-the-arts in
the public tracking setting. And the outperforming of OC-
SORT is more significant on MOT20 which has more severe
occlusion scenes. Some samples from the test set of MOT20
are shown in the last row in Figure 6.

D. Pseudo-code of OC-SORT
See the pseudo-code of OC-SORT in Algorithm. 1.

E. More Results on DanceTrack
To gain more intuition about the improvement of OC-

SORT over SORT, we provide more comparisons. In Fig-
ure 8, we show more samples where SORT suffers from
ID switch or Fragmentation caused by non-linear motion
or occlusion but OC-SORT survives. Furthermore, in Fig-
ure 9, we show more samples of trajectory visualizations
from SORT and OC-SORT on DanceTrack-val set.

DanceTrack [54] is proposed to encourage better associ-
ation algorithms instead of carefully tuning detectors. We
train YOLOX [19] detector on MOT17 training set only to
provide detections on DanceTrack. We find the tracking
performance of OC-SORT is already higher than the base-
lines (Table 11). We believe the potential to improve multi-
object tracking by better association strategy is still promis-
ing and DanceTrack is a good platform for the evaluation.

F. Integrate Appearance into OC-SORT
OC-SORT is pure motion-based but flexible to integrate

with other association cues, such as object appearance. We

make an attempt of adding appearance information into OC-
SORT and achieve significant performance improvements,
validated by experiments on MOT17, MOT20, and Dance-
Track. Please refer to Deep OC-SORT [38] for details.

G. More Discussion of State Noise Sensitivity
In Section 3.2.1, we show that the noise of state estimate

will be amplified to the noise of velocity estimate. This is
because the velocity estimate is correlated to the state es-
timate. But the analysis is in a simplified model in which
velocity itself does not gain noise from the transition di-
rectly and the noise of state estimate is i.i.d on different
steps. However, in the general case, such a simplification
does not hold. We now provide a more general analysis of
the state noise sensitivity of SORT.

For the process in Eq 1, we follow the most commonly
adapted implementation of Kalman filter 3 and SORT 4 for
video multi-object tracking. Instead of writing the mean
state estimate, we consider the noisy prediction of state es-
timate now, which is formulated as

xt|t−1 = Ftxt|t−1 +wt, (15)

where wt is the process noise, drawn from a zero
mean multivariate normal distribution, N , with covari-
ance, wt ∼ N (0,Qt). As xt is a seven-tuple, i.e. xt =
[u, v, s, r, u̇, v̇, ṡ]⊤, the process noise applies to not just the
state estimate but also the velocity estimates. Therefore, for
a general form of analysis of temporal error magnification
in Eq 5, we would get a different result because not just the
position terms but also the velocity terms gain noise from
the transition process. And the noise of velocity terms will
amplify the noise of position estimate by the transition at

3https://github.com/rlabbe/filterpy
4https://github.com/abewley/sort

Figure 6. The visualization of the output of OC-SORT on randomly selected samples from the test set of HeadTrack [56] (the
first two rows) and MOT20 [14] (the bottom row). These two datasets are both challenging because of the crowded scenes
where pedestrians have heavy occlusion with each other. OC-SORT achieves superior performance on both datasets.

the next step. We note the process noise as in practice:

Qt =

σ2
u 0 0 0 0 0 0
0 σ2

v 0 0 0 0 0
0 0 σ2

s 0 0 0 0
0 0 0 σ2

r 0 0 0
0 0 0 0 σ2

u̇ 0 0
0 0 0 0 0 σ2

v̇ 0
0 0 0 0 0 0 σ2

ṡ

, (16)

and the linear transition model as

Ft =

1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

. (17)

We assume the time step when a track gets untracked is
t1 and don’t consider the noise from previous steps. For
simplicity, we assume the motion in the x-direction and y-
direction do not correlate. We take the motion on the x-
direction as an example without loss of generality:

δut0
∼ N (0, σ2

u), δu̇t0
∼ N (0, σu̇

2). (18)

On the next step, with no correction from the observa-
tion, the error would be accumulated (∆t = 1),

δut0+1 ∼ N (0, 2σ2
u+σu̇

2), δu̇t0+1 ∼ N (0, 2σu̇
2). (19)

Therefore, the accumulation is even faster than we ana-
lyze in Section 3.2 as

δut0+T
∼ N (0, (T + 1)σ2

u +
1

2
T (T + 1)σ2

u̇). (20)

In the practice of SORT, we have to suppress the noise from
velocity terms because it is too sensitive. We achieve it by
setting a proper value for the process noise Qt. For exam-
ple, the most commonly adopted value 5 of Qt in SORT is

Qt =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.0001

. (21)

In such a parameter setting, we have the ratio between

5https://github.com/abewley/sort/blob/master/sort.py#L111

keep tracking

target lost

re-associated direction difference

KF estimate trajectory
tracked trajectory
untracked trajectory
virtual trajectory

KF estimations
estimations by ORU
untracked observations
tracked observations

(a) (b) (c)

Figure 7. Illustration of how ORU changes the behaviors of SORT after an untracked track is re-associated to an observation.
The circle area with shadow indicates the range that an estimate can be associated with observations close enough to it. (a).
The track is re-associates with an observation zt2 at the step t2 after being untracked since the time step t1. (b). Without
ORU, on the next step of re-association, even though the KF state is updated by zt2 , there is still a direction difference
between the true object trajectory and the KF estimates. Therefore, the track is unmatched with detections again (in blue).
(c). With ORU, we get a more significant change in the state, especially the motion direction by updating velocity. Now, the
state estimate (in red) is closer to the state observation and they can be associated again.

the noise from position terms and velocity terms as

β =
(T + 1)σ2

u

0.5T (T + 1)σ2
u̇

=
200

T
. (22)

In practice, a track is typically deleted if it keeps untracked
for Tdel time steps. Usually we set Tdel < 10, so we have
β > 20. Therefore, we usually consider the noise from ve-
locity terms as secondary. Such a convention allows us to
use the simplified model in Section 3.2.1 for noise analysis.
But it also brings a side-effect that SORT can’t allow the ve-
locity direction of a track to change quickly in a short time
interval. We will see later (Section H) that it makes trou-
ble to SORT when non-linear motion and occlusion come
together and motivates the design of ORU in OC-SORT.

H. Intuition behind ORU
ORU is designed to fix the error accumulated during oc-

clusion when an untracked track is re-associated with an
observation. But in general, the bias in the state estimate x̂
after being untracked for T time steps can be fixed by the
update stage once it gets re-associated with an observation.
To be precise, the Optimal Kalman gain, i.e. Kt, can use
the re-associated observation to update the KF posteriori pa-
rameters. In general, such an expectation of KF’s behavior
is reasonable. But because we usually set the correspond-
ing covariance for velocity terms very small (Eq 21), it is

difficult for SORT to steer to the correct velocity direction
at the step of re-association.

Motivated by such observations, we design ORU. In the
simplified model shown in Figure 7, the circle area with the
shadow around each estimate footage is the eligible range
to associate with observations inside. ORU is designed for
the case that a track is re-associated after being untracked.
Therefore, the typical situation is as shown in the figure that
the true trajectory first goes away from the linear trajectory
of KF estimates and then goes closer to it so that there can
be a re-association. After the re-association, there would be
a cross of the two trajectories.

In SORT, after re-associating with an observation, the
direction of the velocity of the previously untracked track
still has a significant difference from the true value. This is
shown in Figure 7(b). This makes the estimate on the fu-
ture steps lost again (the blue triangle). The reason is the
convention of Q discussed in Appendix G. Therefore, even
though the canonical KF can support fixing the accumu-
lated error during being untracked theoretically, it is very
rare in practice. In ORU, we follow the virtual trajectory
where we have multiple virtual observations. In this way,
even if the value of Q[4 :, 4 :] is small, we can still have
a better-calibrated velocity direction after the time step t2.
We would like to note that the intuition behind ORU is from
our observations in practice and based on the common con-
vention of using Kalman filter for multi-object tracking. It

does not make fundamental changes to upgrade the power
of the canonical Kalman filter.

Here we provide a more formal mathematical expression
to compare the behaviors of SORT and OC-SORT. Assume
that the track was lost at the time step t1 and re-associated
at t2. We assume the mean state estimate is

x̂t1|t1 = [u1, v1, s1, r1, u̇1, v̇1, ṡ1]
⊤, (23)

and the covariance at t1 is

Pt1|t1 =

σ2
u1

0 0 0 0 0 0
0 σ2

v1 0 0 0 0 0
0 0 σ2

s1 0 0 0 0
0 0 0 σ2

r1 0 0 0
0 0 0 0 σ2

u̇1
0 0

0 0 0 0 0 σ2
v̇1

0
0 0 0 0 0 0 σ2

ṡ1

.

(24)
Then, because the covariance expands from the input of pro-
cess noise at each step of predict, at t2, we have the priori
estimates (t∆ = t2 − t1) of state

x̂t2|t2−1 = [u2, v2, s2, r2, u̇2, v̇2, ṡ2]
⊤, (25)

with
u2 = u1 + u̇1t∆,

v2 = v1 + v̇1t∆,

s2 = s1 + ṡ1t∆,

r2 = r1,

u̇2 = u̇1,

v̇2 = v̇1,

ṡ2 = ṡ1.

(26)

And the priori covariance

Pt2|t2−1 =

σ2
u2

0 0 0 0 0 0
0 σ2

v2 0 0 0 0 0
0 0 σ2

s2 0 0 0 0
0 0 0 σ2

r2 0 0 0
0 0 0 0 σ2

u̇2
0 0

0 0 0 0 0 σ2
v̇2

0
0 0 0 0 0 0 σ2

ṡ2

,

(27)
with

σ2
u2

= σ2
u1

+ t∆(σ
2
u + σ2

u̇1
) +

t∆(t∆ − 1)

2
σ2
u̇,

σ2
v2 = σ2

v1 + t∆(σ
2
v + σ2

v̇1) +
t∆(t∆ − 1)

2
σ2
v̇ ,

σ2
s2 = σ2

s1 + t∆(σ
2
s + σ2

ṡ1) +
t∆(t∆ − 1)

2
σ2
ṡ ,

σ2
r2 = σ2

r1 + t∆σ
2
r ,

σ2
u̇2

= σ2
u̇1

+ t∆σ
2
u̇,

σ2
v̇2 = σ2

v̇1 + t∆σ
2
v̇ ,

σ2
ṡ2 = σ2

ṡ1 + t∆σ
2
ṡ .

(28)

Now, SORT will keep going forward as normal. There-
fore, with the re-associated observation zt2 , we have

SORT

{
x̂t2|t2 = x̂t2|t2−1 +Kt2(zt2 −Hx̂t2|t2−1),

Pt2|t2 = (I−Kt2H)Pt2|t2−1

(29)
where the observation model is

H =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 , (30)

and the Kalman gain is

Kt2 = Pt2|t2−1H
⊤(HPt2|t2−1H

⊤ +Rt2)
−1. (31)

On the other hand, OC-SORT will replay Kalman filter
predict on a generated virtual trajectory to gain the poste-
riori estimates on t2 (ORU). With the default linear motion
analysis, we have the virtual trajectory as

z̃t = zt1 +
t− t1
t2 − t1

(zt2 − zt1), t1 < t < t2. (32)

Now, to derive the posteriori estimate, we will run the loop
between predict and re-update from t1 to t2.

OC-SORT

{
x̂t|t = Fx̂t−1|t−1 +Kt(z̃t −HFx̂t−1|t−1)

Pt|t = (I−KtH)(FPt−1|t−1F
⊤ +Qt)

(33)
where the Kalman gain is

Kt = Pt|t−1H
⊤
t (HPt|t−1H

⊤ +Rt)
−1, (34)

and we can always rewrite it with

Pt|t−1 = FPt−1|t−1F
⊤ +Qt. (35)

In the common practice of Kalman filter, we assume a con-
stant set of Gaussian noise for the process noise Qt. This
assumption typically can’t hold in practice. This makes the
conflict that when there are consistent observations over
time, we require a small process noise for multi-object
tracking in high-frame-rate videos. However, when there
is a period of observation missing, the direction difference
between the true direction and the direction maintained by
the linear motion assumption grows. This causes the failure
of SORT to consistently track previously lost targets even
after re-association.

We show the different outcomes of SORT and OC-SORT
upon re-associating lost targets in Eq 29 and Eq 33. Ana-
lyzing their difference more deeply will require more as-
sumptions of the underlying true object trajectory and the
observations. Therefore, instead of theoretical proof, we
demonstrate the gain of performance from OC-SORT over
SORT empirically as shown in the experiments.

Algorithm 1: Pseudo-code of OCSORT.

Input: Detections Z = {zik|1 ≤ k ≤ T, 1 ≤ i ≤ Nk}; Kalman Filter KF; threshold to remove untracked tracks texpire
Output: The set of tracks T = {τi}

1 Initialization: T ← ∅ and KF;
2 for timestep t← 1 : T do

/* Step 1: match track prediction with observations */

3 Zt ← [z1t , ..., z
Nt
t]⊤ /* Obervations */

4 X̂t ← [x̂1
t , ..., x̂

|T |
t]⊤ from T /* Estimations by KF.predict */

5 Z ← Historical observations on the existing tracks
6 Ct ← CIoU(X̂t,Zt) + λCv(Z,Zt) /* Cost Matrix with OCM term */
7 Linear assignment by Hungarians with cost Ct

8 T matched
t ← tracks matched to an observation

9 T remain
t ← tracks not matched to any observation

10 Zremain
t ← observations not matched to any track

/* Step 2: perform OCR to find lost tracks back */

11 ZT remain
t ← last matched observations of tracks in T remain

t

12 C remain
t ← CIoU(Z

T remain
t ,Zremain

t)

13 Linear assignment by Hungarians with cost C remain
t

14 T recovery
t ← tracks from T remain

t and matched to observations in ZT remain
t

15 Zunmatched
t ← observations from ZT remain

t that are still unmatched to tracks
16 T unmatched

t ← tracks from T remain
t that are still unmatched to observations

17 T matched
t ← {T matched

t , T recovery
t }

/* Step 3: update status of matched tracks */
18 for τ in T matched

t do
19 if τ.tracked = False then

/* Perform ORU for track from untracked to tracked */
20 zτt′ , t

′ ← The last observation matched to τ and the time step
21 Rollback KF parameters to t′

/* Generate virtual observation trajectory */

22 Ẑτ
t ← [ẑτt′+1, ..., ẑ

τ
t−1]

23 Online smooth KF parameters along Ẑτ
t

24 end
25 τ.tracked = True
26 τ.untracked = 0
27 Append the new matched associated observation zτt to τ ’s observation history
28 Update KF parameters for τ by zτt
29 end

/* Step 4: initialize new tracks and remove expired tracks */
30 T new

t ← new tracks generated from Zunmatched
t

31 for τ in T unmatched
t do

32 τ.tracked = False
33 τ.untracked = τ.untracked+ 1

34 end
35 T reserved

t ← {τ | τ ∈ T unmatched
t and τ.untacked < texpire} /* remove expired unmatched tracks */

36 T ← {T new
t , T matched

t , T reserved
t } /* Conclude */

37 end
38 T ← Postprocess(T) /* [Optional] offline post-processing */
39 Return: T

(a) SORT: dancetrack0036 (b) OC-SORT: dancetrack0036

(c) SORT: dancetrack0054 (d) OC-SORT: dancetrack0054

(e) SORT: dancetrack0064 (f) OC-SORT: dancetrack0064

(g) SORT: dancetrack0078 (h) OC-SORT: dancetrack0078

(i) SORT: dancetrack0089 (j) OC-SORT: dancetrack0089

(k) SORT: dancetrack0100 (l) OC-SORT: dancetrack0100
Figure 8. More samples where SORT suffers from the fragmentation and ID switch of tracks from occlusion or non-linear
motion but OC-SORT survives. To be precise, the issue happens on the objects by SORT at: (a) #322→ #324; (c) ID switch
between #672 and #673, later #673 being lost; (e) #760→ #761; (g) #871→ #872; (i) #1063→ #1090, then ID switch with
#1081; (l) #1295 → #1304. We select samples from diverse scenes, including street dance, classic dance and gymnastics.
Best viewed in color and zoomed in.

dancetrack0004_GT#3

(a) GT #3 on video #0003

dancetrack0005_GT#0

(b) GT #0 on video #0005

dancetrack0007_GT#1

(c) GT #1 on video #0007

dancetrack0010_GT#2

(d) GT #2 on video #0010

dancetrack0018_GT#0

(e) GT #0 on video #0018

dancetrack0025_GT#6

(f) GT #6 on video #0025

dancetrack0034_GT#9

(g) GT #9 on video #0034

dancetrack0035_GT#6

(h) GT #6 on video #0035

dancetrack0041_GT#0

(i) GT #0 on video #0041

dancetrack0047_GT#0

(j) GT #0 on video #0047

dancetrack0065_GT#0

(k) GT #0 on video #0065

dancetrack0077_GT#5

(l) GT #5 on video #0077

dancetrack0079_GT#3

(m) GT #3 on video #0079

dancetrack0081_GT#0

(n) GT #0 on video #0081

dancetrack0081_GT#11

(o) GT #11 on video #0081
Figure 9. Randomly selected object trajectories on the videos from Dancetrack-val set. The black cross indicates the ground
truth trajectory. The red dots indicate the trajectory output by OC-SORT and associated to the selected GT trajectory. The
green triangles indicate the trajectory output by SORT and associated to the selected GT trajectory. SORT and OC-SORT
use the same hyperparameters and detections. Trajectories are sampled at the first 100 frames of each video sequence.

