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The content of this supplementary material involves:
* Noise Components Analysis in Sec. A.

» Comparison between Different Noise Modeling Meth-
ods in Sec. B.

* Training Detail in Denoising Stage in Sec. C.

* More Ablation Studies in Sec. D.

* Visualizing ISO dependence in Sec. E.

* Low-light Image Denoising Dataset in Sec. F.

* Image Denoising Datasets in rawRGB Space in Sec. G.

* More Quantization and Qualitative Results in Sec. H.

A. Noise Components Analysis
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Figure A. Overview of imaging pipeline of CMOS photosensors.

As shown in Fig. A, the rawRGB image acquisition pro-
cess can be summarised in four processes, which are pho-
tons incidence, photons converted to electrons, electrons to
voltage, and voltage to digital signals [4], and various noises
can be induced in these operations.

Photons Incidence. Shot noise arises due to the uncertainty
generated when photons are incident, which is an unavoid-
able physical phenomenon [ 10, 15]. Shot noise is the dom-
inant source of signal-dependent noises, which is generally
modeled as a Poisson distribution and is determined by the
signal and the camera gain. Some methods [9, | 2] approxi-
mate the Poisson distribution by the Gaussian distribution.
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Photons to Electrons. Dark currents are electrons gener-
ated within the sensor due to the thermal effect, hence dark
current noise is also known as thermal noise [7, 15]. We
divide the dark current noise Npc into three components,
i.e., dark current fixed-pattern noise Ngp, dark current shot
noise Npcsn and black level error noise Ngi.g.

In a real sensor, slight differences between individ-
ual pixels resulting in another source of noise called dark
current fixed pattern noise [15] or dark-current nonuni-
formity [10]. Early sensor experts considered dark cur-
rent fixed pattern noise suffers from temperature depen-
dency [1 1, 13]. With the increasingly advanced sensor tech-
nology [12,22] of recent years, mainstream modern sensors
are no longer subject to temperature dependence. There-
fore, PMN [8] and Starlight [17] consider this temperature-
independent FPN.

The presence of dark currents not only leads to dark
current FPN Npp but also to cause the output level of
the sensor to be unstable at O in a light-free environment,
which can cause some images to appear color bias phe-
nomenon [19,20]. Further, sensor experts define the output
value of a sensor in the absence of light as the black level.
Therefore, the black level error is the difference between
the level when no light arrives at camera and the recorded
black level by the camera. While ELLE [19] uses a uniform
distribution to model black level error noise Nprg, ELD
models this type of noise by sampling the real black level
errors. PMN [8] recalibrates the black level by averaging
400 bias frames taken at different ISO settings.

In addition, Npc s is the dark current shot noise repre-
senting the randomness of the thermal effect.

Electrons to Voltage. Read noise N,..q is generated by
the uncertainty of the electronic readout and is a device-
dependent noise. To model the read noise and dark cur-
rent shot noise jointly, ELD [20] employs the Tukey lambda
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distribution [14], which has a longer tail and can help
mitigate the chrominance artifacts in low-light conditions.
ELLE [19] and Starlight [17] employ the heteroscedastic
Gaussian noise to model the shot noise V¢, the read noise
Nieaq and dark current shot noise Npcgn jointly.

Besides, the row-by-row readout manner of CMOS sen-
sors will also lead to row noise, since there exists random-
ness of the analog-to-digital converter (ADC) between dif-
ferent rows.

Voltage to Digital Signals. The quantization error is caused
by rounding, as the ADC has a finite accuracy. The prob-
ability distribution of the quantization noise is usually con-
sidered to be uniform.

In summary, heteroscedastic Gaussian noise and row
noise can be implemented by establishing a relationship
between the ISO and noise parameters. For the noise
caused by dark currents, the dark current FPN is a spatially-
dependent and time-invariant fixed-pattern noise, while the
black level error is ISO-specific single value. The proposed
fine-grained noise model and the analysis of each noise
component can guide us in the design of network structure
and training strategy.

B. Comparison of Noise Models

As shown in Tab. A, we compare our noise model (Ours)
with 4 physics-based methods (i.e., ELLE [19], ELD [20],
SFRN [21], and PMN [8]) and 2 learning-based methods
(i.e., NoiseFlow [2] and Starlight [17]). Note that the order
is different from Tab. 1 in the main manuscript for a clearer
comparison. And the quantization noise is omitted since all
methods model it with the same formulation.

ELLE [19] and ELD [20] do not link the black level
error noise with the ISO configuration, and fixed-pattern
noise is overlooked in their noise models. SFRN [21] and
PMN [8] employ the emerging real noise-based synthesis
strategy, but they require real bias frames and paired noisy-
clean images for noise synthesis, respectively, which also
limits the generalization capability of the model to some
extent. In contrast to the physical methods described above,
we can have multiple types of noise and ISO relationships
while avoiding complex manual calibrations. For example,
in Sec. 4.3, we compare our ISO-related black level error
noise with the image-related ones used by ELD and ELLE.
The better performance illustrates that ISO correlation of
noise models is crucial. PMN does not model ISO-related
read noise, row noise, and dark current shot noise, although
it takes into account ISO-related shot noise, black level er-
ror noise, and dark current FPN. While SFRN uses real bias
frames instead of signal-independent noise, compared to
our construction of ISO-dependent noise components, the
capacity of bias frames can also limit its generalization ca-
pability. Further, our approach can be adopted for two dif-

ferent synthesis strategies, i.e., clean image-based and real
noise-based synthesis strategies, which also demonstrates
the flexibility of our approach.

As for learning-based methods, the NoiseFlow [2] ig-
nores the complex low-light noise components such as the
row noise and fixed-pattern noise. Starlight [17] only con-
siders a single ISO setting and ignores ISO-related noise
parameters, which greatly reduces the accuracy and gener-
alization ability of the noise model. In addition, they still
require manually calibrating the fixed-pattern noise, which
limits the flexibility of starlight [17]. In contrast, our ap-
proach takes into account strip artifacts and color bias with-
out manual parameter calibration and is flexible enough to
incorporate the emerging real noise-based denoising pro-
cess.

C. Training Detail in Denoising Stage

We follow the same training settings with PMN. The de-
noising network [6] is trained with 8 non-overlapped 512 x
512 x 4 patches with L loss for 1,800 epochs. We initial-
ize the learning rate to 2 x 104, which is steadily decreased
to 1 x 10~° with the cosine learning rate decay [16]. In spe-
cific, we use rotation and flipping augmentations, 1,865 and
720 samples from SID and LLD are used for Sony A7S2
and Nikon D850. We chose ELD as val set and SID as test
set, which is consistent with PMN.

D. More Ablation Studies

Paired Data Volume. Our proposed low-light dataset
(LLD) is primarily intended for training the learning-based
noise models. This part of the experiment is to verify
whether the newly captured LLD is in close agreement with
the noise distribution of the original public SID dataset.
In Tab. B, due to increased paired data volume, perfor-
mance improvement in denoising network performance can
be achieved.

Noisy-Clean Pair Sources. In training the denois-
ing network stage, half data in each mini-batch comes
from the darkshading correction (i.e., (D — k - Npp —
Npre(IS0),I) pairs) and the other comes from the zero-
mean part of our noise model (i.e., (I + Ngg + Nrow +
Ny, I) pairs). In other words, the ratio of darkshading cor-
rection pairs 7 = 50%. It is worth noting that darkshading
correction pairs require paired noisy-clean images for syn-
thesis, while zero-mean part pairs of our noise model re-
quire only clean images for synthesis. To assess the con-
tribution of each set, experiments are conducted by em-
ploying different darkshading correction pairs ratios of total
paired images per mini-batch for training the denoising net-
work. The noisy images with the darkshading correction,
ie., D' — k. Npp — Nppp(ISO), are fed into the de-



Table A. Comparison between different noise modeling methods. I denotes a clean image for noisy image synthesis, S means that the
noise is sampled from real bias frames. In this table, all hand-calibrated variables are highlighted in blue, and the learnable parameters are
highlighted in red. Note that the variables marked with * are kept fixed for different ISO configurations.

Method Category Nihot ‘ Nreaa ‘ Npesn Nrp NpLE Nrow
ELLE [19] Physics N(0,81 -1+ 5) - U (a*,b*) N (0,02)
ELD [20] Physics P (I)B1) —1 TL(X30,07L) - S N (0,02)
SFRN [21] Physics LiP(I)Br)—1T S
PMN [8] Physics 5P (I/B1) -1 - Npp-1SO Npre(I1SO) -

NoiseFlow [2] Learn N(0,B1 -1+ B2) - - -
Starlight [17] Learn DNN*(N(0, 85 - I + 33)) DNN*(N}p) DNN*(N(0,0%%))
Ours Learn N(0,81 - T+ Bs) Npp - k Ngre(IS0) N (0,02)

Figure B. Thirty scenarios in our low-light image denoising dataset (LLD).

Table B. PSNR/SSIM performance with ablation studies about dif-
ferent paired data volume settings.

SID ELD
100 250 300 100 200
PSNR | 42.06 39.60 36.85 | 44.47 4197
SSIM | 0955 0.938 0.923 | 0.968 0.928
PSNR | 4242 39.62 36.88 | 44.56 4233
SSIM | 0.955 0.939 0.924 | 0.968 0.937

Paired Data Index

SID [6]

SID [6]+LLD

Table C. PSNR/SSIM performance with ablation studies about dif-
ferent darkshading correction pairs ratios r of total paired images
per mini-batch for training the denoising network.

r Index SID ELD
100 250 300 100 200
100% PSNR | 42.84 40.53 37.57 | 46.12 44.34
SSIM | 0.960 0.946 0.933 | 0.982 0.974
5% PSNR | 42.81 40.60 37.44 | 46.22 44.55
SSIM | 0.959 0.944 0.931 | 0.982 0.973
50% PSNR | 43.36 41.02 37.80 | 46.74 44.95
SSIM | 0.961 0.948 0.935 | 0.986 0.977
25% PSNR | 4297 40.59 37.54 | 46.44 4472
SSIM | 0.960 0.946 0.934 | 0.985 0.976
0% PSNR | 42.75 40.41 37.15 | 46.24 4451
SSIM | 0.956 0.932 0.916 | 0.984 0.973

noising network during the test phase to obtain the denois-
ing results. As shown in Tab. C, the darkshading correction
pairs ratio setting r of total paired images 50% is adopted
for training the deep denoisers in our experiments.

E. Visualizing ISO dependence

As shown in the Fig. Fig. D, when training our noise
model and denoiser with the Ngpg(ISO) calibrated by
PMN, the PSNR will drop by ~0.1 dB, showing the effec-
tiveness of our learned ISO dependency.

F. Low-light Image Denoising Dataset

For the noisy images, we adopt 24 different ISO settings,
i.e.,, 50, 64, 80, 160, 200, 250, 320, 400, 500, 640, 800,
1000, 1250, 1600, 2000, 3200, 4000, 5000, 6400, 8000,
10000, 12800, 16000 and 25600. Our method models the
noise in the rawRGB space, and we exclusively employed
unprocessed 14-bit raw data. As shown in Fig. B, 30 dif-
ferent sets of indoor scenes are adopted in our LLD. Sony
Imaging Edge Desktop Remote and Nikon Camera Control
Pro 2 software are employed for remote shooting with Sony
A7S2 and Nikon D850. Empirically, the misalignment of
long and short exposure images captured with the remote
shutter is less severe than with the manual shutter. The ex-
posure time for the noisy images is set to four groups (i.e.,
1/10s, 1/30s, 1/1600s, and 1/3200s) and the corresponding
exposure time for the clean images is set to three groups (2s,
4s, and 8s), which ensures that the exposure ratio is in the
range of [100,300]. The exposure ratio with the same def-

inition as ELD/SFRN, i.e., p = %, and Tyt
is chosen from the four groups such that p € [100, 300].
We capture only one short exposure noisy image using a
specific ISO setting within one scene. ELD and LLD em-
ploy identical camera devices (i.e., Sony A7S2 and Nikon
D850), as well as low/high ISO and long/short exposure set-
tings for capturing the noisy-clean pairs, so the ELD dataset
can serve as a suitable validation or testing set for the LLD
dataset. By contrast, ELD [20] chooses three ISO levels
(i.e., 800, 1600, and 3200) and two exposure ratios (i.e.,
100 and 200) for noisy images in 10 scenes, resulting in
60 rawRGB image pairs in total, which limits ELD to the
benchmark rather than the training set for learning-based
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Figure C. Comparison of different noise synthesis methods between ELD [20] and Ours.
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methods.

G. Image Denoising Datasets in rawRGB
Space

As shown in the Tab. D, we present the descriptions of
relevant image denoising datasets in rawRGB space, e.g.,
number of scenes and noisy-clean pairs, reference synthesis
method and assumed noise model.

H. More Quantization and Qualitative Results

Comparison of Different Noise Synthesis Methods. As
shown in the Fig. C, we compare the synthesized noise ob-
tained by our method and ELD with the real noise. ELD
captures the row noise pattern well, but the color bias is
less consistent with the real noisy images. In contrast, our
method takes into account the ISO-related black level error
noise and therefore has a color bias closer to the real noisy
images. In terms of KL divergence, our noise model pro-
duces synthetic noise that matches the real noise closer than
ELD, i.e., lower KL divergence.

Comparison of Denoising Results. As shown in Figs. E

and F, we compare our physics-guided ISO-dependent
noise model in two noisy image synthesis schemes, i.e.,
clean image-based synthesis strategy (denoted by Ours)
and real noise-based synthesis strategy (denoted by Ours*),
with 3 learning-based methods, 3 physics-based methods,
and 3 real noise-based methods. Neglecting black level
error noise, Poisson-Gaussian noise [9], NoiseFlow [2]
and CA-GAN [5] leads to significant color bias in the
denoising results. Starlight [17] only considers a sin-
gle ISO setting and therefore has very limited general-
ization capabilities. In contrast, our method provides
the clearest texture and most accurate color denoising re-
sult.
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Figure E. Denoising results of different methods on real noisy images from SID [6].
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