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1. Network Details

We illustrate the network details of our RHWF in this
section. The detailed architecture of correlation pooling op-
eration, the backbone and homography aggregator in Fo-
cusFormer, the homography parameterization using transla-
tion of the 4 corner points, and the homography coordinate
projection for the homography-guided image warping are
demonstrated.

1.1. Correlation Pooling Operation

As illustrated in Fig. 1, before being sent into the ho-
mography aggregator, the correlation volume is separately
processed by average-pooling and center sampling in the
last 2 dimensions to produce 2 feature maps of the size
H ×W ×RC ×RC and H ×W × (RC + 1)× (RC + 1).
The 2 feature maps are then reshaped into H × W × R2

C

and H ×W × (RC + 1)2 and concatenated in the channel
dimension and sent into the homography aggregator. This
operation keeps the perceptual range while saving the net-
work parameters by reducing the input channel of the fea-
ture maps by nearly a half.
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Figure 1. Demonstration of the correlation pooling operation.

1.2. Detailed Architecture of Backbone and Homog-
raphy Aggregator

The detailed architecture of the backbone and homogra-
phy aggregator in FocusFormer is shown in Fig. 2. As illus-
trated in Fig. 2a, the input image is first processed by a 3×3
convolution layer with the depth of 32 and 1 instance nor-
malization+ReLU layer. 2 blocks consisting of 2 residual

*Corresponding author.

...

32

56

80

96

96

DD

DD

DD

DD

Convolution Instance+ReLU Stride-2

Res-layer Group+ReLU Max-pooling

(a)

(b)

II CC

¢T¢T

DD

F2F2

F1F1

Figure 2. The detailed architecture of the (a) backbone and (b)
homography aggregator in FocusFormer. In (a), the solid lines
denote the branch for extracting the feature map of 1-scale RHWF,
and the dashed lines of the additional scale in 2-scale RHWF. The
numbers denote the depth of convolution layers. In (b), D denotes
the depth of convolution layers, which is set to D = 80 for 1-scale
RHWF and D = 64 for the extra scale in 2-scale RHWF.

layers are then used to produce the feature branches for 1-
scale RHWF and the additional scale in 2-scale RHWF. The
output feature maps of different scales, namely F1 and F2,
are separately reprojected by two 1×1 convolution layers to
achieve a feature channel of 96, which is much fewer than
the channel of 256 in IHN [3]. The backbone in our RHWF
discards the max-pooling operation that is usually used in
the previous works [3, 9]. Instead, RHWF uses the resid-
ual layer of stride 2 to conduct the downsampling, which
saves the computation costs. We note that the backbone for
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the input image pair Ia and Ib share the same weights, and
the feature map of the homography-guided warped image is
extracted repeatedly through the recurrence, which can be
expressed as

Fn
b = ϕ(W(Ib; Ĥ

n)). (1)

We illustrate the architecture of the homography aggre-
gator in FocusFormer in Fig. 2b. The correlation is first
processed by 2 pure convolution layers and then processed
successively by the basic blocks composing of 2 convolu-
tion layers, 1 group normalization+ReLU layer, and 1 stride
2 max-pooling layer until the spatial size of the feature map
becomes 2 × 2. The first 2 convolution layers convert the
correlation into the latent space to facilitate the estimation.
Finally, the feature map is projected by the final block with-
out the max-pooling layer to produce the residual transla-
tion prediction ∆T. We note that the whole FocusFormer
works recurrently with tied weights, and hence the homog-
raphy aggregator works in a similar manner that doesn’t re-
quire extra parameters during recurrence.

1.3. Homography Parameterization

As in the previous works [3, 5, 6, 9], we parameterize
the homography matrix using the translation of the 4 cor-
ner points of an image, namely Eq. (6) in the main text.
Let’s first go over Eq. (6) in the main text as

Anĥn = bn, (2)

where bn is the coordinate of the projected 4 corner points,
and An is composed of the projected 4 corner points and
the original 4 corner points. We denote the original 4 corner
points of an image as (u1, v1), (u2, v2), (u3, v3), (u4, v4),
and the corresponding projected ones as (u′

1, v
′
1), (u

′
2, v

′
2),

(u′
3, v

′
3), (u

′
4, v

′
4). The two sets of points are related by the

predicted T̂n as

u′n
1 = u1 + T̂n(0, 0, 0)

v′
n
1 = v1 + T̂n(1, 0, 0)

u′n
2 = u2 + T̂n(0, 0, 1)

v′
n
2 = v2 + T̂n(1, 0, 1)

u′n
3 = u3 + T̂n(0, 1, 0)

v′
n
3 = v3 + T̂n(1, 1, 0)

u′n
4 = u4 + T̂n(0, 1, 1)

v′
n
4 = v4 + T̂n(1, 1, 1).

(3)

And then we construct An as

An =



u1 v1 1 0 0 0 −u1u
′n
1 −v1u

′n
1

0 0 0 u1 v1 1 −u1v
′n
1 −v1v

′n
1

u2 v2 1 0 0 0 −u2u
′n
2 −v2u

′n
2

0 0 0 u2 v2 1 −u2v
′n
2 −v2v

′n
2

u3 v3 1 0 0 0 −u3u
′n
3 −v3u

′n
3

0 0 0 u3 v3 1 −u3v
′n
3 −v3v

′n
3

u4 v4 1 0 0 0 −u4u
′n
4 −v4u

′n
4

0 0 0 u4 v4 1 −u4v
′n
4 −v4v

′n
4


, (4)

and bn as

bn =
[
u′n

1 v′
n
1 u′n

2 v′
n
2 u′n

3 v′
n
3 u′n

4 v′
n
4

]T
. (5)

Finally, the vectorized homography can be expressed as

ĥn =
[
Ĥn

11 Ĥn
12 Ĥn

13 Ĥn
21 Ĥn

22 Ĥn
23 Ĥn

31 Ĥn
32

]T
, (6)

which can be computed by Eq. (6) in the main text.

1.4. Homography Coordinate Projection

Once we obtain the homography matrix Ĥn, the original
coordinate of an image x = (u, v) can be projected byu′n

v′n

1

 ∼

Ĥn
11 Ĥn

12 Ĥn
13

Ĥn
21 Ĥn

22 Ĥn
23

Ĥn
31 Ĥn

32 1

uv
1

 . (7)

The projection is conducted on each coordinate position
of an image, which enables the pixel-wised homography-
guided image warping, namely W(Ib, Ĥ

n). We note that,
in practice, the computed homography needs to be scaled to
perform the image warping. Taking the homography calcu-
lated on the 32 × 32 feature map as an example, the scale
should be multiplied by a factor of 4.

2. Dataset Details
We evaluate our RHWF on the datasets including

MSCOCO [7], 4×/8× cross-resolution MSCOCO [9], and
GoogleEarth/GoogleMap cross-modal [10] datasets. For a
fair comparison, all the methods included for evaluation are
trained and tested by the same training and test splits on
each dataset. It is worth noting that in the previous works
CLKN and DLKFM [4, 10], one of the input images is of
a larger size 192 × 192. Previous work LocalTrans [9] im-
paints the boundary of the warped image by warping the
image of a larger size 192× 192 and re-cropping it. On the
other side, our RHWF only needs the input images of size
128× 128, and the warping is also conducted on the image
of size 128× 128, which means our RHWF achieves better
accuracy with less information. Fig. 2 shows the input im-
age pairs of each dataset. In the following, we will illustrate
each dataset in detail.
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Figure 2. Exemplary image pairs related by homography of different datasets.

MSCOCO [7] is a large-scale image dataset of real-
world RGB images, which is first used in [5] for deep ho-
mography estimation. The input image is uniformly resized
into 320 × 240 and then perturbed to form the image un-

der the homography deformation. The image pair of size
128× 128 is then produced by cropping the 320× 240 im-
ages at the same position. The perturbation range is set to
[−32, 32] as in [3–6, 9, 10].
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Cross-Resolution MSCOCO is first employed in [9].
The homography estimation of this kind of image data facil-
itates multiscale gigapixel photography [2]. The data gen-
eration process of the cross-resolution MSCOCO is basi-
cally similar to MSCOCO, except for one of the produced
128 × 128 images is first downsampled by the factor of 4
or 8 and then upsampled to 128× 128 to produce the image
pairs of resolution gaps.

GoogleEarth contains high-resolution satellite images
captured on different dates. The images captured for the
same place in different seasons are cropped into 192× 192
image pairs, which enables the 128 × 128 images to have
a perturbation of [−32, 32]. The satellite images saved on
04/2018 and 06/2019 about the Great Boston area are used
to build the dataset, which brings the image pair modality
gaps by introducing the temporal change. It is worth not-
ing that the training split of GoogleEarth fixes the transfor-
mation of image pairs, which limits the homography defor-
mation augmentation in the training stage. Consequently,
our RHWF comes into overfitting after 30000 training it-
erations, and hence we use an early stopping strategy by
taking the model at the 30000th iteration as the final model
for GoogleEarth. For other methods, we employ their best
reported results on GoogleEarth for a fair comparison.

GoogleMap contains multimodal images provided by
the Google Static Map API. Two corresponding images be-
long to static google map and satellite map are cropped to
form the multimodal image pair. The cropped image size
is 192 × 192 as in GoogleEarth. It is observed that severe
modality gap exists in the image pairs.

3. More Experimental Results

We further illustrate more experimental results of our
RHWF, including the recurrent ACE comparison with the
previous SOTA work IHN [3], the attention map of the
attention-focusing mechanism at each iteration, and the ho-
mography estimation results.

3.1. Recurrent ACE Comparison

The homography estimation errors, namely ACE, during
the recurrent process can further reveal the character of our
proposed RHWF. We compare the ACE during the recurrent
process of the previous SOTA work IHN [3] and our RHWF
in Fig. 3. It is interesting that our RHWF might produce the
estimation with less accuracy at the former iterations, while
it can surpass IHN after few iterations. One possible expla-
nation is that homography-guided image warping progres-
sively reduces the feature inconsistency and the attention-
focusing mechanism aggregates the intra/inter correspon-
dence information in a gradually focusing manner through
the iteration.

3.2. Attention Map of the Attention-Focusing Mech-
anism

In Fig. 4, 5, and 6, we illustrate the attention maps of
the attention-focusing mechanism at each iteration on cross-
resolution MSCOCO. It is observed that as the resolution
gap grows, the global attention map becomes more ambigu-
ous. Fortunately, our proposed homography-guided image
warping can correct the deformation between the 2 images
and the attention-focusing mechanism gradually shrinks the
attention range, which can clarify the attention.

3.3. Homography Estimation Results

We demonstrate the homography estimation results in
Fig. 7 and 8. It is observed that under the severe ho-
mography deformation and resolution/modality gaps, our
RHWF provides stable and accurate homography estima-
tion results. It is interesting in Fig. 7 that the scenes at the
2nd and 3rd row of the 4x cross-resolution MSCOCO are
extremely lack of texture, but our RHWF is still able to es-
timate the homography accurately, which further reveals the
effectiveness of the homography-guided image warping and
FocusFormer.
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Figure 4. The self- and cross-attention map of RHWF at each iteration. For each scene, The 1st row shows the image Ia of the standard
resolution with the self-attention map. The 2nd, 3rd and 4th row shows the image Ib with no (Ib), 4× (Ib(4 ↓)), and 8× (Ib(8 ↓))
downsampling and cross-attention maps. The red arrows denote the query point of attention, and the red and blue boxes separately
highlight the self- and cross-attention maps.
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Figure 5. The self- and cross-attention map of RHWF at each iteration. For each scene, The 1st row shows the image Ia of the standard
resolution with the self-attention map. The 2nd, 3rd and 4th row shows the image Ib with no (Ib), 4× (Ib(4 ↓)), and 8× (Ib(8 ↓))
downsampling and cross-attention maps. The red arrows denote the query point of attention, and the red and blue boxes separately
highlight the self- and cross-attention maps.
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Figure 6. The self- and cross-attention map of RHWF at each iteration. For each scene, The 1st row shows the image Ia of the standard
resolution with the self-attention map. The 2nd, 3rd and 4th row shows the image Ib with no (Ib), 4× (Ib(4 ↓)), and 8× (Ib(8 ↓))
downsampling and cross-attention maps. The red arrows denote the query point of attention, and the red and blue boxes separately
highlight the self- and cross-attention maps.
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Figure 7. Homography estimation results of methods including SIFT+RANSAC [8], DHN [5], MHN [6], LocalTrans [9], and our RHWF.
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Figure 8. Homography estimation results of methods including IHN [3], SIFT+RANSAC [8], SIFT+MAGSAC [1], CLKN [4], DHN [5],
MHN [6], MHN+DLKFM [10], and our RHWF.
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