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In this supplementary document we first provide more
implementation details of our method. Next, we explain de-
tails on the modifications of our approach for partial shape
matching. Afterwards, we provide more ablative experi-
ments to demonstrate the advantages of our method. Even-
tually, we show additional qualitative results of our method.

S1. More implementation details

Our learning framework is implemented in PyTorch and
uses the original DiffusionNet implementation1. In the con-
text of the functional map framework, we choose the first 80
LBO eigenfunctions as basis functions for complete shape
matching. For partial shape matching, we choose the num-
ber to be 50 and 30 for the CUTS and HOLES subsets of the
SHREC’16, respectively. Similarly, we choose the number
to be 30 for the partial view matching. As for deep feature
similarity, we use Sinkhorn normalisation with the number
of iterations equal to 10 and temperature parameter equal to
0.2. We train our feature extractor with the Adam optimiser
with learning rate equal to 10−3. The batch size is chosen
to be 8 for SURREAL dataset and 1 for other datasets.

S2. Modifications for partial shape matching

In the context of partial shape matching, the functional
map from the complete shape to the partial shape becomes
a slanted diagonal matrix. Analogous to DPFM, we regu-
larise the predicted functional maps based on this property.
Specifically, for X being the complete shape and Y being
the partial shape, the unsupervised functional map regulari-
sation can be modified as

Lbij = ∥CxyCyx−Ir∥2F ,Lorth = ∥CxyC
⊤
xy−Ir∥2F , (S1)

where Ir is a diagonal matrix in which the first r elements
on the diagonal are equal to 1, and r is related to the surface
area ratio between two shapes. To obtain the soft corre-
spondence matrix Π̂xy , we replace Sinkhorn normalisation
by the column-wise softmax operator.

1https://github.com/nmwsharp/diffusion-net

S3. Ablation study
Supervised contrastive learning. One of the key compo-
nents of our self-supervised loss terms is the unsupervised
functional map regularisation. To evaluate its importance,
we replace the unsupervised losses in Eq. (5) and Eq. (6) by
supervised contrastive loss similar to Eq. (7), i.e.

Esup = −
∑

(i,j)∈P

log
exp

(
F i

x · F j
y/τ

)∑
(·,k)∈P exp

(
F i

x · Fk
y /τ

) , (S2)

where P is the set of matched points between shape X and
shape Y . For this ablation experiment, we consider the same
experiment setting as in Sec. 5.2 to avoid over-fitting.

Geo. (×100) F (PC) S (PC) S19 (PC)

with Esup 1.5 (4.8) 5.2 (6.8) 6.9 (8.1)
Ours 2.0 (3.5) 3.2 (3.8) 4.4 (6.6)

Table S1. Quantitative results on the FAUST, SCAPE and
SHREC’19 datasets trained on SURREAL dataset. The best re-
sults in each column are highlighted.

The quantitative results are summarised in Tab. S1. No-
tably, our self-supervised approach outperforms the super-
vised counterpart in most settings. The reason is that the
unsupervised functional map regularisation enforces more
smooth and consistent correspondences in comparison to
the supervised contrastive learning.

Robustness to initial pose. As indicated in the limita-
tion part, our method takes vertex position as input and is
thus not rotation-invariant. To be more robust to the choice
of initial pose, during training we randomly rotate input
shapes as data augmentation, thereby encouraging that the
extracted features are less sensitive to the initial pose of the
shape. To evaluate the performance, we follow the experi-
ment setting in Sec. 5.1, with the only difference being that
here all test shapes are randomly rotated around the vertical
axis.

Tab. S2 summarises the quantitative results. We ob-
serve that the network performance can be substantially im-
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https://github.com/nmwsharp/diffusion-net


Geo. (×100) F (PC) S (PC) S19 (PC)

Ours (w/o aug.) 8.8 (12.0) 14.0 (14.2) 13.9 (14.7)
Ours (w/ aug.) 4.7 (5.6) 5.3 (6.2) 6.0 (6.8)

Table S2. Quantitative results on the FAUST, SCAPE and
SHREC’19 datasets in terms of mean geodesic errors (×100). All
test shapes are randomly rotated. The best results in each column
are highlighted.

proved by using a random rotation as data augmentation
during training. Fig. S1 shows some qualitative results of
our method on FAUST dataset with randomly initial poses.

Figure S1. Qualitative results on FAUST dataset with different
initial poses for both mesh and point cloud matching.

Robustness to noise. As mentioned in the main paper,
previous deep functional map methods predict point maps
based on the functional map framework. However, point
clouds only admit an inaccurate estimation of LBO eigen-
functions, especially in the presence of noise. Therefore,
directly applying such methods to point clouds leads to a
large performance drop. In contrast, our method predicts
point maps based on the deep feature similarity without re-
lying on the functional map framework.

Figure S2. One shape on FAUST dataset with increasing noise
magnitude from left to right. The leftmost one is the clean point
cloud.

To further evaluate our method’s robustness to noise,
we add an increasing amount of zero-mean isotropic Gaus-
sian noise to point positions of shapes in the test set of the
FAUST dataset. For a fair comparison, we do not train
or fine-tune the networks on each noise magnitude. As
a proof-of-concept, we choose our method and a simple
baseline that is based on our framework but does not use
Ealign, Ence during training for comparison, which is simi-
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Figure S3. Mean geodesic errors for point cloud matching in dif-
ferent noise magnitudes. Our method achieves more robust point
cloud matching based on deep feature similarity.

lar to Sec. 6. We note that the simple baseline predicts point
maps based on the functional map framework via functional
maps conversion. Fig. S2 shows the point cloud with differ-
ent noise magnitude. Fig. S3 plots the mean geodesic errors
on the FAUST dataset w.r.t. the corresponding noise mag-
nitude. We observe that our method achieves better results
and is much more robust against noise, especially for large
degrees of noise.

Robustness to sampling. To evaluate our method’s ro-
bustness to varying sampling density, we use an anisotropic
remeshed version of the FAUST and SCAPE datasets (de-
noted F a and S a). Below we show an example shape pair
with varying sampling density and corresponding matching.

Figure S4. An example shape pair and the corresponding quali-
tative result of our method on the anisotropic remeshed FAUST
dataset.

Tab. S3 shows that both ConsistFMaps and Deep Shells
overfit to the sampling density (with SHOT descriptor they
overfit both for meshes and point clouds; with vertex po-
sition as descriptor they only overfit for point clouds). In
contrast, our method is more robust and demonstrates bet-
ter performance, particularly for point clouds.



Train FAUST SCAPE

Test F (PC) F a (PC) S (PC) S a (PC)

ConsistFMaps (w/ xyz) 2.4 (11.2) 2.9 (12.4) 5.1 (12.3) 5.4 (13.1)
w/ SHOT (original) 1.5 (16.4) 15.3 (32.1) 2.0 (18.3) 6.9 (24.8)

Deep Shells (w/ xyz) 1.7 (6.0) 2.7 (7.2) 5.3 (7.8) 5.7 (8.4)
w/ SHOT (original) 1.7 (13.2) 12.0 (18.8) 2.5 (14.1) 10.0 (18.3)

Ours 2.0 (2.4) 2.6 (3.0) 3.1 (4.1) 3.3 (4.4)

Table S3. Quantitative results on FAUST, SCAPE and their
anisotropic remeshed versions. All methods are trained on the
original datasets.

Matching with outliers. Fig. S5 shows an example
matching result from real-scanned raw point clouds (by
transferring texture). We observe that the extracted Diffu-
sionNet features (see colour-coded shapes on the left and
right, which visualise DiffusionNet features projected onto
three RGB channels via t-SNE) are degraded due to the out-
liers. Since we use DiffusionNet, our method carries over
this known limitation (of DiffusionNet).

Figure S5. A qualitative result from real-scanned raw point clouds
and the corresponding extracted features from DiffusionNet.

Data efficiency. We train our method on the entire SUR-
REAL dataset and summarise the results in Tab. S4.
When using significantly more data, our method achieves
a (slightly) better cross-dataset generalisation ability. Com-
pared to point cloud matching methods, our method utilises
the strong functional map regularisation and explicitly con-
siders multi-modal training, thus requires only a small
amount of training data.

|Data| F (PC) S (PC) S19 (PC)

5k 2.0 (3.5) 3.2 (3.8) 4.4 (6.6)
230k 1.9 (3.2) 3.0 (3.6) 4.0 (5.8)

Table S4. Cross-dataset generalisation evaluated on the FAUST,
SCAPE and SHREC’19 datasets and trained on the SURREAL
dataset.

S4. More qualitative results
In this section, we provide more qualitative matching re-

sults on diverse shape matching datasets, see Figs. S6-S10.

Figure S6. Qualitative results on FAUST dataset of our method
applied to both meshes and point clouds. Our method achieves
accurate matchings for both modalities.

Figure S7. Qualitative results on SCAPE dataset of our method
applied to both meshes and point clouds.

Figure S8. Qualitative results on SHREC’19 dataset of our method
applied to noisy point clouds. Our method enables accurate point
cloud matching even in the presence of noise.



Figure S9. Qualitative partial shape matching results on
SHREC’16 dataset of our method applied to both meshes and point
clouds. The leftmost one is the complete shape to be matched. Our
method enables accurate multimodal partial shape matching.

Figure S10. Qualitative partial view matching results on
SURREAL-PV dataset of our method applied to noisy partial ob-
served point clouds. The top-left one is the complete shape to
be matched. Our method obtains accurate correspondences for
partially-observed noisy point clouds with different sampling and
disconnected components.
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