
Generalizing Dataset Distillation via Deep Generative Prior
Supplemental Material

George Cazenavette1 Tongzhou Wang1 Antonio Torralba1 Alexei A. Efros2 Jun-Yan Zhu3

1Massachusetts Institute of Technology 2UC Berkeley 3Carnegie Mellon University

georgecazenavette.github.io/glad

A. More Visualizations

Please see our web page for more visualizations:
georgecazenavette.github.io/glad.

B. StyleGAN Latent Spaces

Here we further elaborate on our embedding spaces for
those unfamiliar with the StyleGAN architecture. Some de-
tails will be left out for easier digestion. Visualizations of
these embedding spaces can be seen in Figure 1.

For standard image generation with StyleGAN 3 [4] (and
other StyleGAN models), a random vector is first sampled
from the multi-variate standard normal distribution: z ∼
N (0, I). This random Gaussian vector is then fed through
a “mapping” network (typically a simple MLP) to obtain a
“style code” W. In a class-conditional StyleGAN, this “map-
ping” network is the only place where the class information
is used. This W is then passed to every “style block” of the
“synthesis” network as used to modulate the convolutional
layers of each block. The “synthesis” network takes in a
learned constant as input and uses the modulated convolu-
tions of the style blocks to generate the realistic image.

For each distilled sample in W+ space, we optimize a
different W code for each style block and use the synthe-
sis network to generate our synthetic data. The “mapping”
network is not used aside from initializing W. In Fn space,
we directly optimize the feed-forward input to the nth style
block as well as the W codes for all subsequent style blocks.
Any preceding style blocks and W codes are simply ignored.

C. Dataset Specifications

Our high-resolution data is taken directly from the Im-
ageNet 1k dataset [3] using PyTorch’s built-in ImageNet
loader [5]. To train our expert trajectories, we use data from
the ImageNet training set. To compile our training set for
the expert trajectories, we select the classes from the given
subset, resize the short side of the image to the given resolu-
tion, and take a center crop according to the given resolution

(as done by MTT [1]). The validation set is obtained in the
same way from the ImageNet validation set.

For an enumeration of which ImageNet classes are in
each of our datasets, please see Table 1.

D. More Experimental Values
In Table 2, we show the performance of the distilled im-

ages on the backbone architecture (the architecture used for
distillation). We note that we do not expect GLaD to perform
better than the baseline pixel-based distillation since GLaD
is designed to reduce overfitting to the distilling architec-
ture. Despite this, DC and DM with GLaD perform as well or
better than the pixel-based versions (with MTT performing
somewhat worse).

In Table 3, we show results using 10 distilled images per
class. GLaD still tends to perform better than pixel space
distillation.

In Table 4, we show the baseline results of training each
architecture on the whole dataset. We did not spend time
tuning the hyper-parameters here, perhaps explaining why
ConvNet tends to have the best performance.

E. Hyper-Parameters and Experimental Details
For the experiments on MTT and our new method, we

base our experiments on the open-source code for DC+DM
(link) [7, 8], MTT (link) [1], and TESLA (link) [2].

To optimize the distilled images/latents and learnable
synthetic step-size (α), we use the same optimizer and hyper-
parameters as the original methods. For the W+ latents, di-
vide the learning rate by 10.

For our MTT experiments, we set the number of synthetic
steps per iteration (N ) as 10, the number of real epochs to
match (M ) as 2, and the maximum starting epoch (T+) set
to 2. All experiments on MTT and our new method are run for
5k iterations and then evaluated via the protocol described
in the body of the paper.

All 32 × 32, 128 × 128, 256 × 256, and 512 × 512 ex-
periments are distilled using ConvNetD3, ConvNetD5, Con-

1

https://georgecazenavette.github.io/glad/
https://georgecazenavette.github.io/glad/
https://github.com/VICO-UoE/DatasetCondensation
https://github.com/GeorgeCazenavette/mtt-distillation
https://openreview.net/forum?id=dN70O8pmW8


Style Block

Style Block

Style Block

Style Block

W0

F1

F2

F3

W1

W2

W3

FN

Style BlockWN

W+

Style Block

Style Block

Style Block

Style Block

W0

F1

F2

F3

W1

W2

W3

FN

Style BlockWN

F1

Style Block

Style Block

Style Block

Style Block

W0

F1

F2

F3

W1

W2

W3

FN

Style BlockWN

F3
Figure 1. Different optimization spaces of StyleGAN. Latent variables boxed in red are directly optimized while those that are grayed out are
not used at all. Note: the “mapping” network is omitted here since we do not use it in any of our optimization spaces.

Dataset 0 1 2 3 4 5 6 7 8 9

ImageNet-A Leonberg Probiscis
Monkey Rapeseed Three-Toed

Sloth Cliff Dwelling Yellow Lady’s
Slipper Hamster Gondola Orca Limpkin

ImageNet-B Spoonbill Website Lorikeet Hyena Earthstar Trollybus Echidna Pomeranian Odometer Ruddy
Turnstone

ImageNet-C Freight Car Hummingbird Fireboat Disk Brake Bee Eater Rock Beauty Lion European
Gallinule

Cabbage
Butterfly Goldfinch

ImageNet-D Ostrich Samoyed Snowbird Brabancon
Griffon Chickadee Sorrel Admiral Great Gray

Owl Hornbill Ringlet

ImageNet-E Axolotl Tree Frog King Snake American
Chameleon Iguana Eft Fire

Salamander Box Turtle American
Alligator Agama

ImageNette Tench English
Springer Cassette Player Chainsaw Church French Horn Garbage Truck Gas Pump Golf Ball Parachute

ImageWoof Australian
Terrier Border Terrier Samoyed Beagle Shih-Tzu English

Foxhound
Rhodesian
Ridgeback Dingo Golden

Retriever
English

Sheepdog

ImageNet-
Birds Peacock Flamingo Macaw Pelican King Penguin Bald Eagle Toucan Ostrich Black Swan Cockatoo

ImageNet-
Fruits Pineapple Banana Strawberry Orange Lemon Pomegranate Fig Bell Pepper Cucumber Green Apple

ImageNet-
Cats Tabby Cat Bengal Cat Persian Cat Siamese Cat Egyptian Cat Lion Tiger Jaguar Snow Leopard Lynx

Table 1. Class listings for our ImageNet subsets. Visualizations show classes in the same order given here.



Distil. Alg. Distil. Space ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E ImNette ImWoof ImNet-Birds ImNet-Fruits ImNet-Cats

Pixel 51.7±0.2 53.3±1.0 48.0±0.7 43.0±0.6 39.5±0.9 41.8±0.6 22.6±0.6 37.3±0.8 22.4±1.1 26.6±0.4
MTT [1]

GLaD (Ours) 50.7±0.4 51.9±1.3 44.9±0.4 39.9±1.7 37.6±0.7 38.7±1.6 23.4±1.1 35.8±1.4 23.1±0.4 26.0±1.1

Pixel 43.2±0.6 47.2±0.7 41.3±0.7 34.3±1.5 34.9±1.5 34.2±1.7 22.5±1.0 32.0±1.5 21.0±0.9 22.0±0.6
DC [8]

GLaD (Ours) 44.1±2.4 49.2±1.1 42.0±0.6 35.6±0.9 35.8±0.9 35.4±1.2 22.3±1.1 33.8±0.9 20.7±1.1 22.6±0.8

Pixel 39.4±1.8 40.9±1.7 39.0±1.3 30.8±0.9 27.0±0.8 30.4±2.7 20.7±1.0 26.6±2.6 20.4±1.9 20.1±1.2
DM [7]

GLaD (Ours) 41.0±1.5 42.9±1.9 39.4±0.7 33.2±1.4 30.3±1.3 32.2±1.7 21.2±1.5 27.6±1.9 21.8±1.8 22.3±1.6

Table 2. Performance on ConvNet (architecture used to distill).

Distil. Alg. Distil. Space ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E

Pixel 52.3±0.7 45.1±8.3 40.1±7.6 36.1±0.4 38.1±0.4
DC

GLaD (Ours) 53.1±1.4 50.1±0.6 48.9±1.1 38.9±1.0 38.4±0.7

Pixel 52.6±0.4 50.6±0.5 47.5±0.7 35.4±0.4 36.0±0.5
DM

GLaD (Ours) 52.8±1.0 51.3±0.6 49.7±0.4 36.4±0.4 38.6±0.7

Table 3. Performance with 10 images/class.

Arch. ImNet-A ImNet-B ImNet-C ImNet-D ImNet-E

ConvNet 90.6±0.6 92.3±0.2 84.2±0.3 74.5±1.0 76.2±0.6
ResNet18 78.8±1.6 80.2±1.1 69.2±1.6 51.0±0.7 53.2±2.8
VGG11 78.4±1.1 81.4±1.5 74.6±1.2 67.3±1.6 67.8±1.3
AlexNet 81.0±0.3 76.5±1.4 72.2±1.1 65.4±1.1 63.5±1.1
ViT 77.5±0.4 76.4±0.4 75.5±1.4 58.6±0.9 59.5±1.2

Table 4. Training networks from scratch on the whole dataset.

vNetD6, and ConvNetD7 respectively as the backbone.
The same suite of differentiable augmentations (originally

from the DSA codebase [6]) is used for all experiments:
color, crop, cutout, flip, scale, and rotate with the default
parameters.

To obtain the expert trajectories used by MTT, we train a
model from scratch on the real dataset for 15 epochs of SGD
with a learning rate of 10−2, a batch size of 256, and NO
momentum or regularization.

Our experiments were run on a combination of
RTX2080ti, RTX3090, RTX6000, RTXA5000, and
RTXA6000 GPUs depending on availability.



References
[1] George Cazenavette, Tongzhou Wang, Antonio Torralba,

Alexei A. Efros, and Jun-Yan Zhu. Dataset distillation by
matching training trajectories. In CVPR, 2022. 1, 3

[2] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling
up dataset distillation to imagenet-1k with constant memory.
arXiv preprint arXiv:2211.10586, 2022. 1

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009. 1

[4] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In NeurIPS, 2021. 1

[5] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.
1

[6] Bo Zhao and Hakan Bilen. Dataset condensation with differen-
tiable siamese augmentation. In ICML, 2021. 3

[7] Bo Zhao and Hakan Bilen. Dataset condensation with distribu-
tion matching. WACV, 2023. 1, 3

[8] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In ICLR, 2020. 1, 3


	. More Visualizations
	. StyleGAN Latent Spaces
	. Dataset Specifications
	. More Experimental Values
	. Hyper-Parameters and Experimental Details

