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A. Datasets
We follow the datasets setting in [1]. The training InD dataset is UCF101, which contains 101 classes with 9537 training

samples and 3783 test samples. The OoD datasets for open-set evaluation are HMDB51 and MiT-v2. We use the test sets of
them which contain 1530 samples and 30500 samples respectively. For UCF101 and HMDB51, we follow the MMAction [2]
to use the split 1 for training and evaluation, which is the same with [1]. Note that in [1], they find some classes in HMDB51
overlap with those in UCF101 but they do not clean them. We remove the overlapping classes in UCF101 and HMDB51 so
that OoD data does not contain any samples of InD classes. The classes we remove in HMDB51 and the corresponding same
classes in UCF101 are in Table 1.

HMDB51 35, Shoot bow 29, Push up 15, Golf 26, Pull up
UCF101 2, Archery 71, PushUps 32, GolfSwing 69, PullUps

HMDB51 30, Ride bike 34, Shoot ball 43, Swing baseball 31, Ride horse
UCF101 10, Biking 7, Basketball 6, BaseballPitch 41, HorseRiding

Table 1. Overlapping classes in HMDB51 and UCF101.

B. Evaluation protocols
Based on codes provided by [1], we find that their evaluation metrics including Open maF1 and AUORC are both calcu-

lated under a specific certain threshold, i.e., a sample whose uncertainty is larger than the threshold will be considered as an
OoD sample. The threshold is determined by top 5% uncertainty in the training set. This is contradictory with the classical
metrics in the open-set image recognition, in which common metrics including AUROC and AUPR [3, 4] both consider all
thresholds. Each point on the ROC and PR curve is based on one specific threshold, and the area under ROC and PR curve
is regarded as the comprehensive result of all thresholds. After discussing with authors in [1], they admit that the AUROC,
AUPR and FPR95 which are served as the classical metrics in the open-set image recognition are more suitable for the OSAR
problem. So they modify the corresponding code and we provide the correct results in the Table 1 in our paper. We provide
a comparison between the result of considering only one threshold and all thresholds in Table 2. The results show that no
matter for only considering one threshold or all thresholds, our PSL method can both outperform all methods.

When we use MiT-v2 as the OoD dataset, we find the imbalance problem, which is also mentioned in [1]. The MiT-v2
test set contains 30500 samples while UCF101 test set only contains 3783 samples. This will cause the AUPR to be close to
100% if we regard all samples in MiT-v2 as OoD samples during evaluation. Therefore, we divide the MiT-v2 test set into
10 splits, and evaluate the open-set metrics for 10 times and calculate the mean as the final result. A comparison between the
results of evaluating 10 times and 1 time is shown in Table 3. The results illustrate that when we use all samples in MiT-v2 for
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One threshold [1] All thresholds (ours)
Models Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

TSM

OpenMax 84.18 76.52 100 95.32 90.89 73.16 38.77 95.32
MC Dropout 78.50 71.11 37.80 95.06 88.23 67.62 38.12 95.06
BNN SVI 77.77 71.00 41.13 94.71 91.81 79.65 31.43 94.71
SoftMax 82.77 74.33 29.58 95.03 91.75 77.69 28.60 95.03
RPL 77.75 70.93 40.87 95.59 90.53 77.86 37.09 95.59
DEAR 82.73 74.79 100 94.48 84.16 75.54 89.40 94.48
PSL(ours) 87.53 79.92 14.98 95.62 94.05 86.55 23.18 95.62
∆ (+3.35) (+3.10) (-14.60) (+0.03) (+2.24) (+6.90) (-5.42) (+0.03)

Table 2. Comparison of different evaluation metrics on HMDB51 (OoD) with K400 pretrained.

open-set evaluation, the AUPR will be close to 100%, although our method still achieves the best performance. The AUROC
and FPR95 are not sensitive to the OoD sample numbers.

1 time 10 times
Models Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

TSM

OpenMax 93.34 98.46 29.20 95.32 93.34 88.14 28.95 95.32
MC Dropout 88.71 97.92 39.46 95.06 88.71 83.36 39.46 95.06
BNN SVI 91.86 98.75 36.21 94.71 91.86 90.12 36.21 94.71
SoftMax 91.95 98.68 32.00 95.03 91.95 89.16 32.00 95.03
RPL 90.64 98.57 38.43 95.59 90.64 88.79 38.43 95.59
DEAR 86.04 98.08 87.66 94.48 86.04 87.38 87.40 94.48
PSL(ours) 95.75 99.39 19.00 95.90 95.75 94.96 18.96 95.90
∆ (+2.41) (+0.64) (-10.20) (+0.31) (+2.41) (+4.84) (-9.99) (+0.31)

Table 3. Comparison of different evaluation methods on MiT-v2 (OoD) with K400 pretrained.

C. Implementation details
When we use K400 pretrained model, the only method we need to fulfill is our PSL method, and we follow [1] to set the

base learning rate as 0.001 and step-wisely decayed every 20 epochs with total 50 epochs. When we train the model from
scratch, we need to conduct experiments on all methods in our Table 1. For our PSL method, we use the LARS optimizer [5]
and set the base learning rate and momentum as 0.6 and 0.9 with totally 400 epochs. The reason we use this strategy is
inspired by the contrastive learning SimCLR [6]. For other baselines, we find the above learning rate strategy cannot achieve
good enough closed-set performance, and we find that setting the base learning rate as 0.05 and step-wisely decayed every
160 epochs with totally 400 epochs can achieve comparable closed-set performance. The batch size for all methods is 256,
and we use 16 NVIDIA V100 GPUs to train the model.

D. OSAR performance under I3D and SlowFast backbone
We provide the OSAR results under TSM [7] backbone in Table 1 of the paper. Here, we further provide the OSAR

results under I3D [8] and SlowFast [9] backbones in Table 4 and 5. We can see our PSL method still achieves state-of-the-art
performance under these two backbones. The performance gain under Slowfast when MiTv2 is OoD dataset is marginal, as
baselines already have high performance.

E. Representation analysis through singular value spectrum
To deeply understand the feature representations learned by our method, we analyze the representation through singular

value spectrum. We first compute the covariance matrix C ∈ Rd×d of the embedding matrix:

C =
1

M

M∑
i=1

(zi − z̄)(zi − z̄)T , (1)

where zi and z̄i denote the feature representation of a sample and mean representation of all samples respectively. M is the
total number of samples. Then we conduct singular value decomposition on the matrix C = USV T , S = diag(σk), and plot
the singular values in sorted order and logarithmic scale log(σk). We provide the singular value spectrum in Fig. 1.



w/o K400 Pretrain w/ K400 Pretrain
Datasets Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

UCF101
HMDB51

OpenMax 83.78 54.65 47.60 74.42 92.03 77.72 41.02 95.01
MC Dropout 75.85 40.04 50.34 74.39 91.66 78.87 33.60 94.11
BNN SVI 81.53 53.62 49.18 73.15 91.57 78.65 34.60 93.89
SoftMax 81.24 54.21 48.20 74.42 91.28 79.73 34.18 94.11
RPL 79.80 52.09 54.07 71.62 92.49 81.72 28.89 94.26
DEAR 78.91 54.14 81.96 74.42 89.80 80.86 75.63 93.89
PSL(ours) 86.88 65.63 39.85 78.85 93.62 85.54 28.38 95.46
∆ (+3.10) (+10.98) (-7.75) (+4.43) (+1.13) (+3.82) (-0.51) (+0.45)

UCF101
MiTv2

OpenMax 86.33 77.49 44.40 74.63 93.29 90.17 29.84 94.90
MC Dropout 76.61 62.32 48.43 74.24 93.53 90.97 25.21 94.11
BNN SVI 83.13 76.20 48.63 73.15 93.52 91.24 25.34 93.89
SoftMax 82.58 74.91 46.39 74.63 92.62 90.87 30.55 94.11
RPL 81.47 73.98 49.62 71.89 93.69 92.04 25.97 94.26
DEAR 81.48 77.03 77.58 74.42 90.88 90.55 60.28 93.89
PSL(ours) 88.88 83.30 34.91 78.69 95.70 95.06 20.03 95.51
∆ (+2.55) (+5.81) (-9.49) (+4.06) (+2.01) (+3.02) (-5.18) (+1.25)

Table 4. OSAR performance under I3D backbone.

w/o K400 Pretrain w/ K400 Pretrain
Datasets Methods AUROC↑ AUPR↑ FPR95↓ Acc.↑ AUROC↑ AUPR↑ FPR95↓ Acc.↑

UCF101
HMDB51

OpenMax 80.67 50.49 52.46 75.40 92.49 78.27 35.65 96.30
MC Dropout 76.10 41.37 50.82 75.16 91.83 77.71 29.82 96.70
BNN SVI 81.66 56.72 49.66 76.58 93.34 85.57 27.89 96.56
SoftMax 79.15 48.54 48.79 75.63 93.82 85.56 24.74 96.70
RPL 81.35 54.65 51.64 78.36 93.81 85.41 24.06 96.93
DEAR 78.00 49.38 68.49 76.21 92.28 87.09 62.99 96.48
PSL(ours) 86.20 64.65 42.48 79.40 95.24 89.76 18.72 96.52
∆ (+4.54) (+7.93) (-6.31) (+1.04) (+1.42) (+2.67) (-5.34) (-0.49)

UCF101
MiTv2

OpenMax 79.60 70.05 51.08 75.63 94.34 89.90 25.42 96.30
MC Dropout 75.88 63.12 51.40 75.63 93.43 90.43 24.52 96.70
BNN SVI 82.89 76.13 46.88 76.58 93.53 92.34 28.81 96.56
SoftMax 51.08 75.63 79.60 70.05 94.67 93.34 22.14 96.70
RPL 81.42 73.07 49.13 78.36 94.76 93.39 21.99 96.93
DEAR 78.21 69.30 62.02 76.21 92.60 93.09 59.98 96.48
PSL(ours) 85.00 77.08 43.16 79.40 96.81 96.22 14.52 96.52
∆ (+2.11) (+0.95) (-3.72) (+1.04) (+2.05) (+2.83) (-7.47) (-0.49)

Table 5. OSAR performance under SlowFast backbone.

PSL has larger singular values than the PL in the larger rank index, illustrating that more information is contained in
the not significant dimensions, which is reasonable as PSL keeps the IS information with no direct supervision signal, but
these IS information does help for better OSAR performance according to Table 2 in the paper. PSL with shuffled samples
Qshuf has larger singular values than PSL in the small rank index, indicating more diverse information is learned in the
important dimensions, which are supposed to refer to CS information as CS information is learned by the explicit supervision
signal. The closed-set accuracy with Qshuf is higher than without Qshuf in Table 2 further testifies our conclusion. In Tabel
2 we see that the representations of the same class are tighter with more CS information. Therefore, learning the distinct
temporal information from shuffled videos can enlarge the open-set task related CS information while PSL can enlarge the
IS information, which fulfills the goal to enlarge Eq. 3 for better OSAR performance.

F. Open-set performance w.r.t. s with Qshuf

We provide extension results of Table 4 in the paper. The results are based on HMDB51 (OoD) from scratch. s for Qsc is
set as 0.7, and we change the value of s for Qshuf in Table 6. We can see that the performance is optimal when s for Qshuf is
0.8, but the same s with Qsc which is 0.7 also achieves the good performance. So to reduce the number of hyper-parameters,
we pick up the same s for Qsc and Qshuf by default. In addition, we can see that the closed-set accuracy is lower when s = 1
compared to s = 0.8. This is because we set the similarity between the original video and the shuffled video as 1, which is
not reasonable as the temporal information is totally lost in the shuffled video.



(a) InD (b) OoD (c) OoD (d) InD
Figure 1. Singular value spectrum on HMDB51 (OoD) under different training conditions (a)-(c) and hyper-parameter s (d). (c) contains
the top 20 singular values in (b).

s AUROC↑ AUPR↑ FPR95↓ Acc.↑

1 82.04 53.82 51.82 72.89
0.9 83.12 57.04 46.84 73.31
0.8 86.43 65.58 41.75 76.53
0.7 85.25 63.91 48.34 76.98
0.6 85.26 62.93 46.89 76.77
0.5 84.08 61.76 53.53 75.13
0.4 82.75 59.09 52.72 73.79
0.3 77.34 53.84 68.14 67.67
0.2 73.94 50.63 75.55 60.21
0.1 68.86 41.39 82.15 39.00

Table 6. Ablation results of different s for Qshuf .

G. t-SNE visulization
To illustrate the variance within a class, we provide the Table 2, Fig. 5 and 6 in the paper, which is enough to show

the variance change due to different components in our PSL method. Here, we provide the t-SNE visualization for straight
understanding. All results are based on HMDB (OoD) from scratch. We provide the visualization results of PSL, PSL with
Qns, PSL with Qns, Qsc, and PSL with Qns, Qsc, Qshuf in Fig. 2, 3, 4, 5 respectively. From Fig. 2 we can see PSL alone
cannot keep the intra-class variance when s decreases. Fig. 3 and Fig. 4 tell us that Qns and Qsc are important for PSL to
keep the intra-class variance. Furthermore, Qshuf makes the feature representation tighter if we compare Fig. 4 and Fig. 5,
which shows the model learns more CS information with Qshuf .

(a) similarity=1 (b) similarity=0.7 (c) similarity=0.5

:OoD samples

Figure 2. t-SNE visualization of PSL.



(a) similarity=0.9 (b) similarity=0.8 (c) similarity=0.7

:OoD samples

Figure 3. t-SNE visualization of PSL with Qns.

:OoD samples

(a) similarity=1 (b) similarity=0.9 (c) similarity=0.8

(d) similarity=0.7 (e) similarity=0.6 (f) similarity=0.5
Figure 4. t-SNE visualization of PSL with Qns, Qsc.



:OoD samples

(a) similarity=1 (b) similarity=0.9 (c) similarity=0.8

(d) similarity=0.7 (e) similarity=0.6 (f) similarity=0.5
Figure 5. t-SNE visualization of PSL with Qns, Qsc, Qshuf .

H. InD and OoD uncertainty distribution
We provide the InD and OoD distribution on HMDB51 (OoD) and MiT-v2 (OoD) with K400 pretrain and without K400

pretrain. All results are based on TSM backbone for illustration. The results are shown in Fig. 6, 7, 8, and 9.
From Fig. 6 and 8 we can see that if there is no K400 pretrain, all methods have the overlapping uncertainty between InD

and OoD distribution except OpenMax and our PSL. For instance, Fig. 6 (f) DEAR [1] shows the uncertainty of InD and
OoD samples both cover the range from 0 to 1. In contrast, Fig. 6 (g) PSL shows that in our method, the InD distribution
covers from 0 to 0.3, while the OoD distribution covers from 0 to 0.8. It means our method tends to assign higher uncertainty
to OoD samples. For OpenMax, Fig. 6 (a) shows that InD uncertainy distribution is extremely close to 0, which is a good
phenomenon, but the OoD uncertainty distribution only covers from 0 to 0.3, and the OoD samples whose uncertainty is
larger than 0.3 is too sparse, which means OpenMax tends to assign low uncertainty to both InD and OoD samples, but
assigner lower uncertainty to InD samples.

If we compare Fig. 6 to Fig. 7 or compare Fig. 8 to Fig. 9, we can find that the InD distribution of all methods are closer
to 0 with K400 pretrain. But all methods except our PSL have a serious over confidence problem, which is illustrated by the
fact that the far left column of OoD samples is extremely high, which is also emphasized through the red circles in Fig. 4
of the paper. In contrast, the density of OoD distribution is highest at 0.2 uncertainty in our PSL method, and the density of
OoD distribution is almost 0 at 0 uncertainty. Besides, it is very clear that the OoD distribution and InD distribution in our
PSL is most distinguishable among all methods.



(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)
Figure 6. Uncertainty distribution on HMDB51 (OoD) w/o K400 pretrain.

(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)
Figure 7. Uncertainty distribution on HMDB51 (OoD) w/ K400 pretrain.

(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)
Figure 8. Uncertainty distribution on MiT-v2 (OoD) w/o K400 pretrain.



(a) OpenMax (b) MC Dropout (c) BNN SVI (d) SoftMax

(e) RPL (f) DEAR (g) PSL (ours)
Figure 9. Uncertainty distribution on MiT-v2 (OoD) w/ K400 pretrain.
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