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A. Datasets

We follow the datasets setting in [1]. The training InD dataset is UCF101, which contains 101 classes with 9537 training
samples and 3783 test samples. The OoD datasets for open-set evaluation are HMDB51 and MiT-v2. We use the test sets of
them which contain 1530 samples and 30500 samples respectively. For UCF101 and HMDBS51, we follow the MMAction [2]
to use the split 1 for training and evaluation, which is the same with [1]. Note that in [1], they find some classes in HMDBS51
overlap with those in UCF101 but they do not clean them. We remove the overlapping classes in UCF101 and HMDBS51 so
that OoD data does not contain any samples of InD classes. The classes we remove in HMDBS51 and the corresponding same
classes in UCF101 are in Table 1.

HMDBS51 35, Shoot bow 29, Push up 15, Golf 26, Pull up
UCF101 2, Archery 71, PushUps 32, GolfSwing 69, PullUps

HMDBS51 30, Ride bike 34, Shoot ball 43, Swing baseball 31, Ride horse
UCF101 10, Biking 7, Basketball 6, BaseballPitch 41, HorseRiding

Table 1. Overlapping classes in HMDB51 and UCF101.

B. Evaluation protocols

Based on codes provided by [1], we find that their evaluation metrics including Open maF1 and AUORC are both calcu-
lated under a specific certain threshold, i.e., a sample whose uncertainty is larger than the threshold will be considered as an
OoD sample. The threshold is determined by top 5% uncertainty in the training set. This is contradictory with the classical
metrics in the open-set image recognition, in which common metrics including AUROC and AUPR [3, 4] both consider all
thresholds. Each point on the ROC and PR curve is based on one specific threshold, and the area under ROC and PR curve
is regarded as the comprehensive result of all thresholds. After discussing with authors in [1], they admit that the AUROC,
AUPR and FPR95 which are served as the classical metrics in the open-set image recognition are more suitable for the OSAR
problem. So they modify the corresponding code and we provide the correct results in the Table 1 in our paper. We provide
a comparison between the result of considering only one threshold and all thresholds in Table 2. The results show that no
matter for only considering one threshold or all thresholds, our PSL method can both outperform all methods.

When we use MiT-v2 as the OoD dataset, we find the imbalance problem, which is also mentioned in [1]. The MiT-v2
test set contains 30500 samples while UCF101 test set only contains 3783 samples. This will cause the AUPR to be close to
100% if we regard all samples in MiT-v2 as OoD samples during evaluation. Therefore, we divide the MiT-v2 test set into
10 splits, and evaluate the open-set metrics for 10 times and calculate the mean as the final result. A comparison between the
results of evaluating 10 times and 1 time is shown in Table 3. The results illustrate that when we use all samples in MiT-v2 for
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One threshold [1] All thresholds (ours)
Models Methods AUROCT AUPRT FPR95] Acc.t AUROCT AUPR?T FPRY95| Acc.t

OpenMax 84.18 76.52 100 95.32 90.89 73.16 38.77 9532
MC Dropout  78.50 71.11 37.80  95.06 88.23 67.62 38.12  95.06
BNN SVI 71.77 71.00  41.13  94.71 91.81 79.65 3143 9471
TSM  SoftMax 82.77 74.33 29.58  95.03 91.75 77.69 28.60  95.03
RPL 77.75 70.93 40.87  95.59 90.53 77.86 37.09  95.59
DEAR 82.73 74.79 100 94.48 84.16 75.54 89.40  94.48

PSL(ours) 87.53 79.92 14.98  95.62 94.05 86.55 23.18 95.62
A (+3.35) (+3.10) (-14.60) (+0.03) (+2.24) (+6.90) (-542) (+0.03)

Table 2. Comparison of different evaluation metrics on HMDBS51 (OoD) with K400 pretrained.

open-set evaluation, the AUPR will be close to 100%, although our method still achieves the best performance. The AUROC
and FPR95 are not sensitive to the OoD sample numbers.

1 time 10 times
Models Methods AUROCT AUPRT FPR95] Acc.t AUROCT AUPR?T FPRY95| Acc.t

OpenMax 93.34 98.46 2920 95.32 93.34 88.14 2895 9532
MC Dropout  88.71 9792 3946  95.06 88.71 8336 3946  95.06

BNN SVI 91.86 98.75 36.21 94.71 91.86 90.12 3621 94.71
TSM  SoftMax 91.95 98.68  32.00 95.03 91.95 89.16  32.00 95.03
RPL 90.64 98.57 3843  95.59 90.64 88.79 3843  95.59
DEAR 86.04 98.08 87.66  94.48 86.04 87.38 87.40  94.48

PSL(ours) 95.75 99.39 19.00  95.90 95.75 94.96 18.96  95.90
A (+2.41) (40.64) (-10.20) (+0.31) (+2.41) (+4.84) (-9.99) (+0.31)

Table 3. Comparison of different evaluation methods on MiT-v2 (OoD) with K400 pretrained.

C. Implementation details

When we use K400 pretrained model, the only method we need to fulfill is our PSL method, and we follow [1] to set the
base learning rate as 0.001 and step-wisely decayed every 20 epochs with total 50 epochs. When we train the model from
scratch, we need to conduct experiments on all methods in our Table 1. For our PSL method, we use the LARS optimizer [5]
and set the base learning rate and momentum as 0.6 and 0.9 with totally 400 epochs. The reason we use this strategy is
inspired by the contrastive learning SImCLR [6]. For other baselines, we find the above learning rate strategy cannot achieve
good enough closed-set performance, and we find that setting the base learning rate as 0.05 and step-wisely decayed every
160 epochs with totally 400 epochs can achieve comparable closed-set performance. The batch size for all methods is 256,
and we use 16 NVIDIA V100 GPUs to train the model.

D. OSAR performance under I3D and SlowFast backbone

We provide the OSAR results under TSM [7] backbone in Table 1 of the paper. Here, we further provide the OSAR
results under I3D [8] and SlowFast [9] backbones in Table 4 and 5. We can see our PSL method still achieves state-of-the-art
performance under these two backbones. The performance gain under Slowfast when MiTv2 is OoD dataset is marginal, as
baselines already have high performance.

E. Representation analysis through singular value spectrum

To deeply understand the feature representations learned by our method, we analyze the representation through singular
value spectrum. We first compute the covariance matrix C' € R%*? of the embedding matrix:
M
- AT
C = MZ(ZZ_Z)(ZZ_Z) , (1)
i=1
where z; and z; denote the feature representation of a sample and mean representation of all samples respectively. M is the

total number of samples. Then we conduct singular value decomposition on the matrix C' = USVT, S = diag(c"), and plot
the singular values in sorted order and logarithmic scale log(c*). We provide the singular value spectrum in Fig. 1.



w/o K400 Pretrain w/ K400 Pretrain
Datasets Methods AUROCT AUPRT FPRY95| Acc.t AUROCtT AUPRT FPR95| Acc.t

OpenMax 83.78 54.65 47.60 7442 92.03 7772 41.02  95.01
MC Dropout  75.85 40.04 50.34  74.39 91.66 78.87 3360 94.11

UCF10; BNNSVI 8153  53.62  49.18 73.15 9157 7865 3460 93.89
SoftMax 81.24 5421 4820 7442 9128 7973 3418  94.11
HMDB51 Rpy, 79.80 5209 5407 7162 9249 8172 28.89 94.26
DEAR 78.91 54.14 8196 7442 8980 80.86 7563 93.89
PSL(ours) 8688  65.63 39.85 7885 9362 8554 2838 9546
A (#3.10) (+10.98) (-7.75) (+4.43) (+1.13) (+3.82) (-0.51) (+0.45)
OpenMax 8633 7749 4440 7463 9329  90.17 29.84  94.90
MC Dropout ~ 76.61 6232 4843 7424 9353 9097 2521 9411
UCFlo1 BNNSVI 83.13 7620 4863 73.15 9352 9124 2534 93.89
. SoftMax 8258 7491 4639 7463 9262 9087 3055 94.11
MiTv2  RpL 81.47 7398 4962 71.89  93.60  92.04 2597 9426
DEAR 8148  77.03 7758 7442 9088 9055 6028 93.89
PSL(ours) 88.88 8330 3491 78.69 9570  95.06 20.03 95.51
A (+2.55)  (+5.81) (-9.49) (+4.06) (+2.01) (+3.02) (-5.18) (+1.25)

Table 4. OSAR performance under I3D backbone.

w/o K400 Pretrain w/ K400 Pretrain
Datasets Methods = AUROCT AUPRT FPR95, Acc.t AUROC!T AUPRT FPR95| Acc.t
OpenMax 80.67  50.49 5246 7540 9249 7827 3565 96.30
MC Dropout ~ 76.10 4137  50.82 75.16 91.83  77.71 2982  96.70
UCF101 BNNSVI 81.66 5672 49.66 7658 9334 8557 27.89 96.56
SoftMax 79.15 4854 4879 7563  93.82 8556 2474 96.70
HMDB51 Rpy, 8135 5465 5164 7836 9381 8541 24.06 96.93
DEAR 78.00 4938 6849 7621 9228  87.09 6299 96.48

PSL(ours) 86.20 64.65 4248 79.40 95.24 89.76 18.72  96.52
A (+4.54) (+7.93) (-6.31) (+1.04) (+1.42) (+2.67) (-5.34) (-0.49)

OpenMax 79.60 70.05 51.08  75.63 94.34 890.90 2542 96.30
MC Dropout  75.88 63.12 5140 75.63 93.43 90.43 2452 96.70

UCF101 BNNSVI 82.89  76.13 46.88 7658 9353 9234 2881 96.56
. SoftMax 51.08 7563 79.60 70.05 9467 9334 22.14 96.70
MiTv2  RpL 8142  73.07 49.13 7836 9476  93.39 21.99 96.93
DEAR 7821 6930 6202 7621 9260  93.09 5998 96.48
PSL(ours) 8500  77.08 4316 7940 9681 9622 14.52 96.52
A (+2.11)  (+0.95) (-3.72) (+1.04) (+2.05) (+2.83) (-7.47) (-0.49)

Table 5. OSAR performance under SlowFast backbone.

PSL has larger singular values than the PL in the larger rank index, illustrating that more information is contained in
the not significant dimensions, which is reasonable as PSL keeps the IS information with no direct supervision signal, but
these IS information does help for better OSAR performance according to Table 2 in the paper. PSL with shuffled samples
Qshuy has larger singular values than PSL in the small rank index, indicating more diverse information is learned in the
important dimensions, which are supposed to refer to CS information as CS information is learned by the explicit supervision
signal. The closed-set accuracy with ()5, ¢ is higher than without Q) sp,, ¢ in Table 2 further testifies our conclusion. In Tabel
2 we see that the representations of the same class are tighter with more CS information. Therefore, learning the distinct
temporal information from shuffled videos can enlarge the open-set task related CS information while PSL can enlarge the
IS information, which fulfills the goal to enlarge Eq. 3 for better OSAR performance.

F. Open-set performance w.r.t. s with Q).

We provide extension results of Table 4 in the paper. The results are based on HMDBS51 (OoD) from scratch. s for Q) is
set as 0.7, and we change the value of s for QQsp, ¢ in Table 6. We can see that the performance is optimal when s for Qsp. ¢ 1S
0.8, but the same s with Qs which is 0.7 also achieves the good performance. So to reduce the number of hyper-parameters,
we pick up the same s for . and Qsp. ¢ by default. In addition, we can see that the closed-set accuracy is lower when s = 1
compared to s = 0.8. This is because we set the similarity between the original video and the shuffled video as 1, which is
not reasonable as the temporal information is totally lost in the shuffled video.
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Figure 1. Singular value spectrum on HMDBS51 (OoD) under different training conditions (a)-(c) and hyper-parameter s (d). (c) contains

the top 20 singular values in (b).

G. t-SNE visulization

s AUROCtT AUPRt FPRY95| Ace.t

1 82.04 53.82 51.82 72.89
0.9 83.12 57.04 46.84 73.31
0.8 86.43 65.58 41.75 76.53
0.7 85.25 63.91 48.34 76.98
0.6 85.26 62.93 46.89 76.77
0.5 84.08 61.76 53.53 75.13
04 82.75 59.09 52.72 73.79
0.3 77.34 53.84 68.14 67.67
0.2 73.94 50.63 75.55 60.21
0.1 68.86 41.39 82.15 39.00

Table 6. Ablation results of different s for Qsnu -

To illustrate the variance within a class, we provide the Table 2, Fig. 5 and 6 in the paper, which is enough to show
the variance change due to different components in our PSL method. Here, we provide the t-SNE visualization for straight
understanding. All results are based on HMDB (OoD) from scratch. We provide the visualization results of PSL, PSL with
Qns, PSL with Q,s, @, and PSL with Qps, Qsc, Qshuy in Fig. 2, 3, 4, 5 respectively. From Fig. 2 we can see PSL alone
cannot keep the intra-class variance when s decreases. Fig. 3 and Fig. 4 tell us that ),,s and Q. are important for PSL to
keep the intra-class variance. Furthermore, Q4. s makes the feature representation tighter if we compare Fig. 4 and Fig. 5,
which shows the model learns more CS information with Qpy .
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Figure 2. t-SNE visualization of PSL.
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Figure 4. t-SNE visualization of PSL with Q s, Qsc.
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Figure 5. t-SNE visualization of PSL with Qns, Qsc, Qshuy-

H. InD and OoD uncertainty distribution

We provide the InD and OoD distribution on HMDBS51 (OoD) and MiT-v2 (OoD) with K400 pretrain and without K400
pretrain. All results are based on TSM backbone for illustration. The results are shown in Fig. 6, 7, 8, and 9.

From Fig. 6 and 8 we can see that if there is no K400 pretrain, all methods have the overlapping uncertainty between InD
and OoD distribution except OpenMax and our PSL. For instance, Fig. 6 (f) DEAR [1] shows the uncertainty of InD and
OoD samples both cover the range from 0 to 1. In contrast, Fig. 6 (g) PSL shows that in our method, the InD distribution
covers from 0 to 0.3, while the OoD distribution covers from O to 0.8. It means our method tends to assign higher uncertainty
to OoD samples. For OpenMax, Fig. 6 (a) shows that InD uncertainy distribution is extremely close to 0, which is a good
phenomenon, but the OoD uncertainty distribution only covers from O to 0.3, and the OoD samples whose uncertainty is
larger than 0.3 is too sparse, which means OpenMax tends to assign low uncertainty to both InD and OoD samples, but
assigner lower uncertainty to InD samples.

If we compare Fig. 6 to Fig. 7 or compare Fig. 8 to Fig. 9, we can find that the InD distribution of all methods are closer
to 0 with K400 pretrain. But all methods except our PSL have a serious over confidence problem, which is illustrated by the
fact that the far left column of OoD samples is extremely high, which is also emphasized through the red circles in Fig. 4
of the paper. In contrast, the density of OoD distribution is highest at 0.2 uncertainty in our PSL method, and the density of
OoD distribution is almost 0 at 0 uncertainty. Besides, it is very clear that the OoD distribution and InD distribution in our
PSL is most distinguishable among all methods.
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Figure 6. Uncertainty distribution on HMDBS51 (OoD) w/o K400 pretrain.
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Figure 7. Uncertainty distribution on HMDB51 (OoD) w/ K400 pretrain.
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Figure 8. Uncertainty distribution on MiT-v2 (OoD) w/o K400 pretrain.
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Figure 9. Uncertainty distribution on MiT-v2 (OoD) w/ K400 pretrain.
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