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Semantic - mIoU Panoptic - PQ
λD 1-100 101-150 All 1-100 101-150 All

5 38.8 17.5 31.7 35.3 18.2 29.6
10 40.6 15.6 32.3 36.0 17.1 29.7
50 41.0 13.8 31.9 38.4 12.6 29.8

Table 1. Impact of λD in CPS and CSS in ADE20K 100-10.

1. Additional quantitative results

Impact of λD. To demonstrate the robustness of our ap-
proach to the hyper-parameter choice, we report an ablation
study on the impact of λD in Tab. 1. Setting λD between 5
and 50 maintains stable results on both CSS and CPS while
obtaining different trade-offs between new and old classes.
In particular, when setting λD = 5, we achieve higher re-
sults on the novel classes at the cost of losing performance
on the old ones. Differently, setting λD = 50 increases the
regularization and reduces forgetting, improving the perfor-
mance of old classes while decreasing it on the new classes.
Setting λD = 10 achieves the best trade-off between learn-
ing and forgetting on both semantic and panoptic segmen-
tation. In the paper, we reported results for λD = 10.

50-50 in Continual Panoptic Segmentation. In Tab. 2 we
report additional experiments on Continual Panoptic Seg-
mentation on the 50-50 setting where we perform three
tasks of 50 classes. CoMFormer outperforms all the base-
lines, obtaining the best results on both old and new classes.
In particular, we can see that it exceeds the best competi-
tor, PLOP, by 0.5 PQ in the old classes and 0.2 PQ in the
new ones. When comparing with MiB, however, we can see
that the gap is more relevant: +11.6 PQ on old classes and
+10.2 on the new ones. Finally, we can see that CoMFormer
obtains a small performance gap with the Joint baselines,
which is more relevant for the new classes (-7.6 PQ).

50-50 in Continual Semantic Segmentation. Tab. 3 re-
ports the additional results on the Continual Semantic Seg-
mentation benchmark on the 50-50 setting in mIoU, com-
paring CoMFormer with previous works based on DeepLab
[2] and our re-implementation based on the CoMFormer ar-

50-50 (11 tasks)
Method 1-50 51-150 avg all
FT 0.0 14.3 23.1 9.5
MiB 33.6 16.3 31.8 22.1
PLOP 44.7 26.3 37.9 32.4
CoMFormer 45.2 26.5 37.9 32.7
Joint 50.2 34.1 — 39.5

Table 2. Continual Panoptic Segmentation results on ADE20K
dataset on 50-50 setting in PQ.

50-50 (11 tasks)
Architecture Method 1-50 51-150 avg all

DeepLab-v3 [2]
MiB [1] 45.3 21.6 38.9 29.3
PLOP [3] 48.6 21.6 39.4 30.4
RCIL [4] 48.3 25.0 — 32.5

Per-Pixel
MiB 44.9 25.4 35.0 31.9
PLOP 43.2 24.7 34.6 30.9

Mask-Based

FT 0.0 13.3 12.8 8.9
MiB 24.6 19.4 25.8 21.1
PLOP 48.1 26.6 36.5 33.8
CoMFormer 49.2 26.6 36.6 34.1
Joint 53.4 38.0 — 43.1

Table 3. Continual Semantic Segmentation results on ADE20K
dataset on 50-50 setting in mIoU.

chitecture, both in Per-Pixel and Mask-Based fashion. We
observe that CoMFormer achieves a new state of the art. In
particular, when comparing it with previous works, we can
see that it outperforms the best baseline (RCIL) on both old
(+0.9 mIoU) and new classes (+1.6 mIoU), for an overall
improvement of 1.6 mIoU. Furthermore, CoMFormer also
outperforms the baselines implemented on the same archi-
tecture: w.r.t. to Per-Pixel baselines, there is a relevant per-
formance gap, especially regarding the old classes (CoM-
Former 49.2 vs MiB 44.9 mIoU). Considering the Mask-
Based baselines, CoMFormer shows the best performance,
improving PLOP by 1.1 mIoU on the old classes and by 0.3
mIoU on all.
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MiB PLOP CoMFormer Ground-truth

Figure 1. Qualitative results of CoMFormer v.s. MiB and PLOP on the 100-50 continual panoptic segmentation setting on ADE20K.

MiB PLOP CoMFormer Ground-truth

Figure 2. Qualitative results of CoMFormer v.s. MiB and PLOP on the 100-5 continual panoptic segmentation setting on ADE20K.
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MiB PLOP CoMFormer Ground-truth

10
0-
50

10
0-
10

10
0-
5

Figure 3. Qualitative results of CoMFormer v.s. MiB and PLOP on multiple settings of the continual semantic segmentation benchmark
on ADE20K.

2. Additional qualitative results

Continual Panoptic Segmentation. Fig. 1 and Fig. 2 re-
port additional qualitative results on, respectively, the 100-
50 and 100-5 settings in continual panoptic segmentation,
comparing CoMFormer with MiB and PLOP using images
randomly sampled from the validation set. Considering the
100-50, we can see that PLOP and CoMFormer achieve vi-
sually similar results, while MiB struggles in segmenting

every image object (for example, the clock in the third row).
Differently, on the 100-5, CoMFormer visually outperforms
the other baselines being able to correctly segment all the
objects in the image (e.g. the tent in the first row, the table
in the third row, and the rug in the fourth row). However, we
note a common error across all the methods: some classes
are correctly segmented but misclassified (e.g. grass instead
of earth in the first row and window instead of door in the
third). This error is less present in CoMFormer w.r.t. PLOP
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and MiB, as can be seen from the chandelier in the last row
and the armchair in the third.

Continual Semantic Segmentation. Fig. 3 reports the
qualitative results for the 100-50, 100-10, and 100-5 set-
tings of the continual semantic segmentation benchmark
comparing CoMFormer with MiB and PLOP on images
randomly sampled from the validation set. Considering
the 100-50 setting, MiB is far worse than other baselines:
it is not able to correctly segment the object in the im-
age, achieving low performance. PLOP and CoMFormer
achieve similar results, being able to segment all the ob-
jects in the images. Differently, on the 100-10 setting, the
difference among methods becomes more evident: consid-
ering the second row, CoMFormer correctly segments the
rock and the wall, while misclassifying the road with earth.
However, both PLOP and MiB are not able to segment the
image: the former is not able to report any segment in that
area, while the latter segments incorrectly the area as mount.
Finally, considering the 100-5 setting, we note that MiB
achieves poor performance on both images, being unable to
finely segment the image pixels. Comparing CoMFormer
with PLOP, our model CoMFormer is able to segment more
classes (e.g. the truck in the fifth row and the bag in the last
row), obtaining better performances. Overall, the qualita-
tive results confirm the quantitative findings, where CoM-
Former outperforms the other methods, especially consid-
ering settings where multiple learning steps are performed.
Those longer continual settings are more realistic and al-
lows us to benchmark more efficiently what a truly lifelong
learning agent should be.

3. Class Ordering
In Tab. 4 we report the class ordering of ADE20K that

we used for all the reported experiments, following the pre-
vious benchmarks [1, 3]. Considering the 100-50, 100-10,
and 100-5 settings, reported in the main paper, we note that
44 of the new classes are “things”, while the other 6 are
“stuff”. While there is no difference between “things” and
“stuff” in semantic segmentation, it is especially relevant in
the panoptic segmentation task, where the goal is to sepa-
rate in different segments multiple instances of the “things”
classes, since it introduces additional challenges.
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Idx Name Thing Idx Name Thing Idx Name Thing
1 wall 51 refrigerator ✓ 101 poster ✓
2 building 52 grandstand 102 stage
3 sky 53 path 103 van ✓
4 floor 54 stairs ✓ 104 ship ✓
5 tree ✓ 55 runway 105 fountain ✓
6 ceiling 56 case ✓ 106 conveyer
7 road 57 pool ✓ 107 canopy ✓
8 bed ✓ 58 pillow ✓ 108 washer ✓
9 windowpane ✓ 59 screen ✓ 109 plaything ✓

10 grass 60 stairway 110 swimming
11 cabinet ✓ 61 river 111 stool ✓
12 sidewalk 62 bridge 112 barrel ✓
13 person ✓ 63 bookcase ✓ 113 basket ✓
14 earth 64 blind ✓ 114 waterfall
15 door ✓ 65 coffee ✓ 115 tent ✓
16 table ✓ 66 toilet ✓ 116 bag ✓
17 mountain 67 flower ✓ 117 minibike ✓
18 plant ✓ 68 book ✓ 118 cradle ✓
19 curtain ✓ 69 hill 119 oven ✓
20 chair ✓ 70 bench ✓ 120 ball ✓
21 car ✓ 71 countertop ✓ 121 food ✓
22 water 72 stove ✓ 122 step ✓
23 painting ✓ 73 palm ✓ 123 tank ✓
24 sofa ✓ 74 kitchen ✓ 124 trade ✓
25 shelf ✓ 75 computer ✓ 125 microwave ✓
26 house 76 swivel ✓ 126 pot ✓
27 sea 77 boat ✓ 127 animal ✓
28 mirror ✓ 78 bar ✓ 128 bicycle ✓
29 rug 79 arcade ✓ 129 lake
30 field 80 hovel 130 dishwasher ✓
31 armchair ✓ 81 bus ✓ 131 screen ✓
32 seat ✓ 82 towel ✓ 132 blanket ✓
33 fence ✓ 83 light ✓ 133 sculpture ✓
34 desk ✓ 84 truck ✓ 134 hood ✓
35 rock ✓ 85 tower 135 sconce ✓
36 wardrobe ✓ 86 chandelier ✓ 136 vase ✓
37 lamp ✓ 87 awning ✓ 137 traffic ✓
38 bathtub ✓ 88 streetlight ✓ 138 tray ✓
39 railing ✓ 89 booth ✓ 139 ashcan ✓
40 cushion ✓ 90 television ✓ 140 fan ✓
41 base ✓ 91 airplane ✓ 141 pier
42 box ✓ 92 dirt 142 crt ✓
43 column ✓ 93 apparel ✓ 143 plate ✓
44 signboard ✓ 94 pole ✓ 144 monitor ✓
45 chest ✓ 95 land 145 bulletin ✓
46 counter ✓ 96 bannister ✓ 146 shower ✓
47 sand 97 escalator 147 radiator ✓
48 sink ✓ 98 ottoman ✓ 148 glass ✓
49 skyscraper 99 bottle ✓ 149 clock ✓
50 fireplace ✓ 100 buffet ✓ 150 flag ✓

Table 4. Class ordering of ADE20K [5] used in all reported experiments.
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