
Unifying Short and Long-Term Tracking with Graph Hierarchies
– Supplementary Material –

Orcun Cetintas1* Guillem Brasó12* Laura Leal-Taixé1†

1Technical University of Munich 2Munich Center for Machine Learning

Abstract

In this supplementary material, we provide further de-
tails about our method.

1. Additional Details about SUSHI
1.1. Edge association cues

As explained in Section 4.2, we feed an initial vector
of concatenated pairwise association features to a light-
weight multi-layer perception MLPedge to compute input
edge embeddings in each SUSHI block. Specifically, we
obtain these features from tracklets and embed informa-
tion about time distance, reID-based appearance similar-
ity, spatial and motion-based proximity between two nodes.
Time and position information. Similarly to [3], we en-
code the relative position and time distance among nodes
as initial edge features. We naturally extend this notion
from single detections to tracks by considering the clos-
est detections in time for each pair of tracks. Formally,
given the box coordinate and timestamps of two tracklets
Tu and Tv , defined as u = {(xi, yi, wi, hi, ti)}

unu
i=u1

and
v = {(xi, yi, wi, hi, ti)}

vnv
i=v1

, assuming tunu
< tv1 i.e. Tu

ends before Tv starts, we compute the following position
features:(

2(xnu
− xv1)

hunu
+ hv1

),
2(yunu

− yv1)

hunu
+ hv1

), log
wunu

w1
, log

hunu

hv
1

)
and we naturally compute time difference as tunu

− tv1 .
Appearance Representation. For every object detection
oi ∈ O we obtain embedding ρi representing its appearance
by feeding its image patch to a pretrained convolutional net-
work, ρi = CNNapp(ai). Intuitively, while single embed-
dings can be affected by motion blur or sudden illumination
changes, a representation summarizing the entire set can be
more robust to such phenomena. Hence, we use the eu-
clidean distance among averaged embeddings of tracks as
an appearance similarity term ∥ρuavg − ρvavg∥2.
Motion consistency. Trajectories are expected to be con-
tinuous in the spatio-temporal domain. We utilize this cue

by defining an additional edge feature encoding the motion
consistency of each pair of tracklets. Given two tracklets Tu

and Tv , we estimate their respective velocities in the pixel
domain as vu and vv , respectively. Assuming again tnu <
tv1 , we use the estimated velocities to forward propagate u’s
last position and backward propagate v’s first position until
their middle time point tmid := (tv1 − tunu

)/2, to minimize
the prediction horizon from each track. Formally, we com-
pute posfwrd

u→v := bunu
+tmidvu and posbwrd

v→u := bv1−tmidvv ,
to obtain the edge feature GIoU(posfwrd

u→v, pos
bwrd
v→u), where

GIoU denotes the Generalized Intersection over Union
score [4]. We choose the GIoU score over the commonly
used Intersection over Union because the former still pro-
vides a meaningful signal whenever two boxes do not inter-
sect.

As explained in the main paper SUSHI blocks use the
same edge features and their GNNs share weights. The
only exception is the first level as motion features are not
available at this level becasue each node represents a single
detection.

1.2. Additional implementation details

Clip stitching. As explained in the main paper, SUSHI op-
erates over video clips of 512 frames. To obtain trajectories
over video sequences of arbitrary length, we process videos
in an overlapping sliding window fashion. More specifi-
cally, we set the overlap among windows to be 256 frames
and therefore process videos into clips with corresponding
frame intervals (1, 512), (257, 768), (513, 1024), and so
on. To stitch trajectories in overlapping windows, we use a
simple bipartite matching-based algorithm. Let TA and TB
represent the sets of tracks in two overlapping windows, re-
spectively, restricted over the frame interval in which they
overlap. Since all trajectories in TA and TB are built over
the same initial set of object detections, for every pair of
trajectories TA ∈ TA and TB ∈ TB , we can consider their
IoU i.e. the ratio of boxes that they share in common:

IoU(TA, TB) =
#(TA ∩ TB)

#(TA ∪ TB)

Note that whenever trajectory predictions among the two



clips are consistent, their IoU will be 1, and whenever they
don’t share any boxes, it will be 0. Once we have com-
puted the IoU between each pair of trajectories TA ∈ TA
and TB ∈ TB , we define their pairwise cost as:

c(TA, TB) :=

{
1− IoU(TA, TB) if #(TA ∩ TB) > 0

∞ otherwise.

where the second clause prevents non-overlapping tracks
from being matched. Using this formulation, we obtain the
min-cost bipartite matching between TA and TB , and assign
the same identity to matched trajectories.
Edge pruning. As mentioned in Section 5.2 of the main pa-
per, we define the set of edges of each graph in our hierarchy
by considering for each node, its top K nearest neighbors
(KNNs) according to a position, appearance and motion-
based similarity measure. Making graphs sparse with KNN-
based edge filtering helps to reduce the number of edges,
and therefore computational burden, as well as improving
the edge label imbalance. Intuitively, edges between nodes
with drastically different appearance or infeasible motion
can be discarded early. However, there is a tradeoff: low
values of K might also discard edges belonging to ground
truth trajectories in case of noisy features. Notably, single
monolithic graphs such as MPNTrack’s [3] require high val-
ues of K to achieve good performance, while in our frame-
work consisting of relatively smaller graphs K = 10 suf-
fices, yielding significantly better label distribution.

Choosing the right distance metric to prune edges is
crucial for the overall success of this strategy. Intuitively,
nodes that are close should be likely to belong to the same
trajectory. While MPNTrack relied solely on the distance
among appearance embeddings, we take advantage of two
features of our hierarchy: i) in lower hierarchy levels,
nodes within the same trajectory tend to be very close in
space and time ii) in higher levels, we have motion infor-
mation, which can help us determine physically unreason-
able connections. To exploit these facts, for graphs in the
first level of our hierarchy, we simply use the coordinate-
based distance between each pair of tracks as a similarity
measure. In subsequent levels, for each pair of tracklets
Tu and Tv we define their distance for edge pruning as:
d(Tu, Tv) := λdapp(Tu, Tv)+(1−λ)dmotion(Tu, Tv), where
dapp is the euclidean distance of their appearance embed-
dings, and dmotion is 1 minus their GIoU score. We empiri-
cally set λ = 0.05.

1.3. Message passing network architecture

Time-aware neural message passing updates As ex-
plained in Section 4 of the main paper, at the core of our
SUSHI blocks there is a message passing GNN that, given a
graph at each level of our hierarchy, takes as input its initial
set of node and edge embeddings, and produces new em-
beddings encoding high-order contextual information, that

we later use for edge classification. We now explain them
in detail. Formally, for each graph Gl = (V l, El) at level l
in our hierarchy, we consider embeddings h(0)

v ∈ RdV and
h
(0)
(u,w) ∈ RdE for every node v ∈ V l and edge (u,w) ∈ El,

with dV and dE being their respective dimension. For a
fixed number of steps, s = 1, . . . , S and each node v ∈ V l

and edge (u, v) ∈ El we do:

h
(s)
(u,v) = MLPl

edge

([
h(s−1)
u , h̄

(s−1)
(u,v) , h

(s−1)
v

])
(1)

m(s)
u→v =


MLPl

past

(
[h

(s−1)
u , h̄

(s)
(u,v), h

(s−1)
v ]

)
if tend

u < tstart
v

MLPl
future

(
[h

(s−1)
u , h̄

(s)
(u,v), h

(s−1)
v ]

)
else.

(2)

h(s)
v = MLPl

node

 ∑
u|tend

u <tstart
v

m(s)
u→v,

∑
u|tstart

u <tend
v

m(s)
u→v


(3)

where MLPl
∗ denote multi-layer perceptrons that are

shared across the entire hierarchy level l, [∗, ∗] denotes con-
catenation, h̄(s)

(u,v)
:= [h

(s)
(u,v), h

(0)
(u,v)] and tstart

u (resp. tend
u (u))

denotes the first (resp. last) timestamp of the tracklet associ-
ated to node u ∈ V l. Intuitively, edges are updated by com-
bining their incident nodes’ information. Then nodes are
updated by separately aggregating over embeddings from
their neighboring incident edges in future and past frames
separately, to account for the time directionality. These up-
dates follow the message-passing scheme in [3] and, despite
relying on a set of lightweight multi-layer perceptrons, they
yield embeddings enabling high-accuracy edge classifica-
tion.
Detailed MLP architectures. Our SUSHI blocks consist
of the MLPs defined above for neural message passing, our
edge classifier MLPclass, and an additional MLP used to in-
tialize edge embeddings from their initial features, denoted
as MLPinit

edge. All of their exact architectures are detailed in
Figure 1. We do not count lernable per-level embeddings
due to their negligible cost. Overall, our architecture not
including the ResNet50-IBN reID model, has a total of ap-
proximately 22K parameters, which is notably small for
deep learning standards.

1.4. Rounding edge predictions via linear program-
ming

As mentioned in Section 4.2, given a set of edge predic-
tions ypred

(u,v)∈E over a graph G = (V,E), we use a linear
programming-based algorithm to obtain a new set of track-
lets following [3]. We now explain this algorithm in detail:
we first look at the problem constraints and then provide the
final algorithm used to enforce them.
Flow conservation-type constraints. Recall that edge
predictions aim to approximate the set of edge labels



(a) reID model

ResNet50 (dim=2048) 

Input (dim=128x56x3)

FC (dim=512) + ReLU

FC (dim=128) + ReLU

FC (dim=32) + ReLU

Frozen

Input (dim=6 - 7)

FC (dim=18) + ReLU

FC (dim=18) + ReLU

Input (dim=80)

FC (dim=56) + ReLU

FC (dim=32) + ReLU

Input (dim=64)

FC (dim=32) + ReLU

Input (dim=160)

FC (dim=80) + ReLU

FC (dim=16) + ReLU

Input (dim=16)

FC (dim=1) + Sigmoid

(b) MLPinit
edge

ResNet50 (dim=2048) 

Input (dim=128x56x3)

FC (dim=512) + ReLU

FC (dim=128) + ReLU

FC (dim=32) + ReLU

Frozen

Input (dim=6)

FC (dim=18) + ReLU

FC (dim=18) + ReLU

Input (dim=80)

FC (dim=56) + ReLU

FC (dim=32) + ReLU

Input (dim=64)

FC (dim=32) + ReLU

Input (dim=160)

FC (dim=80) + ReLU

FC (dim=16) + ReLU

Input (dim=16)

FC (dim=1) + Sigmoid

(c) MLPl
past/MLPl

future

ResNet50 (dim=2048) 

Input (dim=128x56x3)

FC (dim=512) + ReLU

FC (dim=128) + ReLU

FC (dim=32) + ReLU

Frozen

Input (dim=6)

FC (dim=18) + ReLU

FC (dim=18) + ReLU

Input (dim=80)

FC (dim=56) + ReLU

FC (dim=32) + ReLU

Input (dim=64)

FC (dim=32) + ReLU

Input (dim=160)

FC (dim=80) + ReLU

FC (dim=16) + ReLU

Input (dim=16)

FC (dim=1) + Sigmoid

(d) MLPl
node

ResNet50 (dim=2048) 

Input (dim=128x56x3)

FC (dim=512) + ReLU

FC (dim=128) + ReLU

FC (dim=32) + ReLU

Frozen

Input (dim=6)

FC (dim=18) + ReLU

FC (dim=18) + ReLU

Input (dim=80)

FC (dim=56) + ReLU

FC (dim=32) + ReLU

Input (dim=64)

FC (dim=32) + ReLU

Input (dim=160)

FC (dim=80) + ReLU

FC (dim=16) + ReLU

Input (dim=16)

FC (dim=1) + Sigmoid

(e) MLPl
edge

ResNet50 (dim=2048) 

Input (dim=128x56x3)

FC (dim=512) + ReLU

FC (dim=128) + ReLU

FC (dim=32) + ReLU

Frozen

Input (dim=6)

FC (dim=18) + ReLU

FC (dim=18) + ReLU

Input (dim=80)

FC (dim=56) + ReLU

FC (dim=32) + ReLU

Input (dim=64)

FC (dim=32) + ReLU

Input (dim=160)

FC (dim=80) + ReLU

FC (dim=16) + ReLU

Input (dim=16)

FC (dim=1) + Sigmoid

(f) MLPl
class

Figure 1. Detailed architectures of all components of our model.

{ypred
(u,v)}(u,v)∈E . Further recall that these labels are de-

fined by considering the set of edges coresponding to
trajectory-paths in the graph. Specifically, given a time-
ordered track Tk = {oki

}nk
i=1 with tki

< tki+1
, we

consider its corresponding path in G given by its edges
E(Tk) := {(ok1 , ok2), . . . , (oknk−1 , oknk

)}, and hence de-
fine, for each (oi, oj) ∈ E:

y(oi,oj) =

{
1 if ∃Tk ∈ T ∗ s.t. (oi, oj) ∈ E(Tk)

0 otherwise
(4)

Now, notice that since each node (i.e. object detection)
can belong to at most one trajectory, edge labels need to
satisfy the following constraints:∑

(oj ,oi)∈E s.t. ti>tj

y(oj ,oi) ≤ 1 ∀oi ∈ V (5)

∑
(oi,ok)∈E s.t. ti<tk

y(oi,ok) ≤ 1 ∀oi ∈ V (6)

Since y’s are binary, these constraints state that each node
should have, at most, one incident edge labeled as 1 con-
necting it to a future (resp. past) node, and they are analo-
gous to the conservation constraints used in network flows
problems [1].
Projection algorithm. The set of edge predictions,
{ypred

(u,v)}(u,v)∈E produced by our GNN already satisfies ap-
proximately 99% of the aforementioned constraints [3] by
simply thresholding them at 0.5. In general, however, hav-
ing unsatisfied constraints makes it ambiguous to determine
the trajectory of an object. In other words, if a node has two

positive-labeled edges connecting it to nodes in future loca-
tions, it becomes unclear which edge should be selected to
form its trajectory. To address these cases, we consider the
subgraph of nodes and edges that, after thresholding, vio-
late inequalities 5 or 6, denoted as V̄ and Ē, respectively,
and obtain the closest feasible binary solution yround to our
predictions ypred by solving the following integer linear pro-
gram:

minyround yround
(
1− 2ypred

)
subject to yround satisfying ineq. 5 and 6 for all nodes in V̄

yround
(u,v) ∈ {0, 1} ∀(u, v) ∈ Ē

(7)

where we index both yround and ypred indexed for all edges
(u, v) ∈ Ē. Note that, since yround is binary, this ob-
jective is equivalent to minimizing the euclidean distance
∥yround − ypred∥2. Moreover, it can be shown that the con-
straint matrix in 7 is unimodular, and hence solving the lin-
ear relaxation of the problem yields a global integer opti-
mum [2]. Overall, Eq. 7 can be very efficiently solved with
off-the-shelf linear programming solvers as the graph over
which it is defined has very few nodes and edges due to a
high percentage of feasible edge predictions produced by
our network that can be directly thresholded.



References
[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows:

Theory, algorithms and applications. Prentice Hall, Upper
Saddle River, NJ, USA, 1993. 3

[2] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal
Fua. Multiple object tracking using k-shortest paths optimiza-
tion. IEEE TPAMI, 33(9):1806–1819, 2011. 3

[3] Guillem Braso and Laura Leal-Taixe. Learning a neural solver
for multiple object tracking. In CVPR, 2020. 1, 2, 3

[4] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized in-
tersection over union: A metric and a loss for bounding box
regression. In CVPR, pages 658–666, 2019. 1


	. Additional Details about SUSHI 
	. Edge association cues
	. Additional implementation details
	. Message passing network architecture
	. Rounding edge predictions via linear programming


