x_t[B,
x_v([B, 3, H, W] -

L] - minibatch of texts
minibatch of images
encode text (x_t)
encode image (x_v)

decode dense feature

#

#

# text_enc -

# image_enc -
s # grounding_dec -

#

#

#

to text emb
to global image emb
(v_d)

(t)
and dense feature
(v_s)

(v_9) (v_d)

to pixel-level dense image emb

6 proj - scalar projection and sigmoid layer
gumbel_max — Gumbel-Max function

8 1d_area - weight of area TCL loss

9

0t = text_enc(x_t) # t[B, C]

i _, v_d = image_enc(x_v) # v_d[B, L, C]

» v_s = grounding_dec(v_d) # v_s[B, C, H, W]

13 mask = proj(einsum("ichw, jc->ijhw", v_s, t)) # [B, B, H, W]

14

5 pos_mask = mask[arange (B), arange(B)].unsqueeze(l) # [B, 1, H, W]

16 pos_mask_b = gumbel_max (pos_mask) # binarized positive mask

7 V_g, _ = lmage_enc(pos_mask_b * x_v)
s s =v_g @ t.T # s[B, B]
9 tcl_v = info_nce(s) # InfoNCE loss

mask / mask.sum( (2,
2 grounded_emb = einsum("ichw,ijhw->ijc",
3 s = einsum("ijc, jc—->13", grounded_emb, t)
2 tcl_f = info_nce(s) # InfoNCE loss

20 W = 3), keepdim=True)

v pos_area = pos_mask.mean ()

7 neg_area = off_diag(mask) .mean ()

# v_gl[B, CI]

vV_sS, W)
# s[B, BI]

# average of off-diagonal

% tcl_area = ld_area * ((pos_area — 0.4).abs() + neg_area)
j tcl_loss = tcl_v + tcl_f + tcl_area
Figure 6. PyTorch-like pseudo code for the core implementation of TCL.
A. Pseudo-code pd
For clarity, we present the pseudo-code for the core im- ="=_:II
plementation of TCL in Fig. 6. As described in Sec. 3, i_l;ﬁl

we first generate text-grounded masks via grounder and
use them to compute text-grounded images and embeddings
(L10-L17). Furthermore, this pseudo-code also demon-
strates our efficiency-aware design of TCL. We compute
the B x B mask, where B is the batch size, using a sin-
gle einsum operation and scalar projection (L13). When
computing TCL, loss, we need to perform CLIP image en-
coder inference again for the grounded images (L17). To
reduce computational complexity, we only use the positive
mask, which is the diagonal of the quadratic mask, for linear
inference with a size of B instead of quadratic (L15). When
computing TCL loss, we use the entire quadratic mask be-
cause a single einsum operation can efficiently compute
the grounded embeddings without requiring additional en-
coder inference (LL.22). A more detailed discussion on the
efficiency is provided in the later section (Appendix D).

B. Architecture Details

Our core design principle is to preserve and exploit the
diverse knowledge of pre-trained CLIP [23]. Therefore, we

Grounding decoder

KP branch ’ '

' Upsampler I Gated Convolution

Figure 7. Architecture of the grounding decoder. The knowl-
edge preservation (KP) branch serves to preserve pre-trained
knowledge intact.

freeze the pre-trained CLIP encoders® and train the ground-
ing decoder for the adaptation from the image-text align-
ment to the region-text alignment. We also considered the
other techniques to preserve knowledge [4], but a simple
freezing strategy worked the best. We follow the simple
modification of MaskCLIP [33] to the CLIP image encoder.

2 After 30, 000 iterations, we unfreeze only the last block of the image
encoder for richer model capability.



with background class without background class
Methods PAMR | VOC Context Object | VOC20 Context59 Stuff City ADE | Avg.
GroupViT 504 187 27.5 79.7 234 153 11.1 92 |294
MaskCLIP 388  23.6 20.6 74.9 264 164 12.6 9.8 | 279
ReCo 25.1 19.9 15.7 57.7 223 148 21.1 112|235
TCL (Ours) 512 243 30.4 71.5 30.3 19.6 231 149 | 339
GroupViT v 51.1 190 279 81.5 23.8 154 11.6 94 | 300
MaskCLIP 4 372 226 18.9 72.1 253 151 112 9.0 | 264
ReCo v 272 219 17.3 62.4 24.7 163 228 124 | 25.6
TCL (Ours) 4 550 304 31.6 83.2 33.9 224 240 17.1 | 37.2

Table 3. Standardizing PAMR condition. To reveal the effect of our refinement method (PAMR), we compare the methods with the same
PAMR condition. TCL achieves the best in both with and without PAMR settings.

They modify the last attention of the CLIP image encoder
to acquire the dense features representing local semantics.
These dense image features V¢ are fed to the grounding de-
coder. As shown in Fig. 7, the grounding decoder consists
of four gated convolution blocks, where the output of a con-
volution is gated by a learned gating parameter and added to
the skip connection. Concretely, the process of gated con-
volution can be written as:

x' = x + tanh(g) - Conv(x), (14)
where x is input feature and g is a learned gating parameter.
The upsamplers increase the feature map resolution for the
high-resolution segmentation capability. The first two up-
samplers use the nearest neighbor interpolation and the last
upsampler adapts the resulting embedding into the pixel-
level embedding by the bilinear interpolation. In addition,
as shown in Fig. 7, we employ two branches strategy: the
main grounding decoder and knowledge preservation (KP)
branches. In this KP branch, the CLIP dense features V¢
are reshaped spatially and upsampled to pixel-level reso-
lution by bilinear interpolation, and then we compute the
text-grounded mask MXP by Eq. (5). There are no learn-
able parameters in this branch and the output masks are just
mixed with the output from the grounding decoder branch
as follows:

M = (1 — wgp) - M + wy, - M, (15)
where MKP is the generated masks from knowledge preser-
vation branch, M’ is the final output mask, and Wyp 15 a
mixing hyperparameter. We use the wy,, of 0.3. To fully
leverage the massive pre-trained knowledge of CLIP [23],
this branch is only used in the inference stage. It also can
be regarded as a cost-free ensemble.

C. Fair Comparison

In this paper, we present a unified evaluation protocol
to facilitate a fair and rigorous comparison. However, the

condition of fair evaluation protocol can be controversial.
Thus, in this section, we provide additional comparisons to
enhance fairness, paving the way for future research on fair
comparison in open-world segmentation.

Fair comparison with refinement methods. In our unified
evaluation protocol, we do not unify refinement methods,
as we believe that each method’s approach to refining the
model output is a design choice. However, some may argue
that a fair comparison protocol should unify the refinement
methods as well. To address this concern, we also provide
the comparison with and without PAMR [1], which is our
refinement method used in TCL. As shown in Table 3, even
using the same refinement method across all methods, TCL
still achieves state-of-the-art performance with a significant
margin in both settings, demonstrating the effectiveness of
its underlying approach. It is also worth noting that the per-
formance gains resulting from PAMR are specific to each
method. For example, TCL and ReCo demonstrate signif-
icant performance improvements of +3.3 and +2.1 mloU,
respectively, while GroupViT only shows a marginal gain of
+0.6 mloU, and MaskCLIP actually leads to a decrease in
performance of —1.5 mloU. We believe that this is because
each comparison method was designed without considering
refinement by PAMR. Thus, because the effectiveness of
the refinement method is closely tied to the main method,
we have not unified the use of refinement methods in our
proposed evaluation protocol.

Fair comparison in dataset scale. Except for GroupViT,
all comparison methods (TCL, ReCo, and MaskCLIP) uti-
lize CLIP pre-trained models. GroupViT proposes a new
encoder architecture and is therefore unable to leverage
CLIP pre-trained models directly, which is one of its lim-
itations. Hence, a fair comparison would be to evaluate
GroupViT as it is. Nevertheless, it could be argued that
comparing GroupViT and other methods at the same train-
ing dataset scale would be a fair comparison. To address
this concern, we provide additional scale-up experiments.
As mentioned, GroupViT is unable to leverage CLIP pre-



Methods | Datasets VOC20 Context59 | Avg.
CC15M + RedCaps12M | 79.7 23.4 51.6
GroupViT CCI15M + YFCC14M 74.1 20.8 475

CC15M + Coyol00M 73.3 25.0 49.2
CC15M + Coyo700M 75.5 24.2 49.9

TCL (Ours) ‘ CCI15M + WIT400M 83.2 33.9 58.6

Table 4. Scale-up GroupViT does not directly help the segmen-
tation capability. WIT400M indicates the dataset of CLIP pre-
training.

‘TCL TCL' GroupViT MaskCLIP ReCo

Speed (s) | 0.08 0.07  0.05 0.04  28.10
FPS (it/s) | 12.93 15.11  20.94 2609  0.04
Mask ratio | 1/4> 1/4>  1/162 /16> 1/167

Table 5. Inference speeds and FPS. Mask ratio indicates the res-
olution ratio of the segmentation masks compared to the input
image size. For example, TCL generates 112 x 112 masks for
448 x 448 input image, while GroupViT generates 28 x 28 masks.
TCL' denotes the TCL model without PAMR.

trained models directly. Thus, for a fair comparison, we
train GroupViT using the publicly available Coyo700M
dataset of large-scale image-text pairs [2], which is larger
than the non-public CLIP training dataset (WIT400M).
However, we observe that a simple scale-up of the training
dataset does not guarantee improvement in performance.
As shown in Table 4, the correlation between dataset size
and performance is not clear. The impact of larger datasets
varies between the datasets (e.g., “CC15M+RedCaps12M”
performs best on VOC20, but “CC15M+Coyol00M” per-
forms best on Context59), and TCL outperforms all variants
of GroupViT despite the fair dataset scale.

D. Efficiency Analysis

While efficiency is not the primary objective of this
study, it is also considered one of our core design princi-
ples, especially regarding inference efficiency for practical
applications. This section provides an analysis of the infer-
ence throughput and our design choices for efficiency.

Inference throughput. We benchmark the inference
speeds and FPS using 448 x 448 images and 21 target
classes on a single NVIDIA V100 GPU. Our benchmark
setting follows an open-world scenario that addresses an ar-
bitrary class, meaning that the text embeddings are com-
puted for every inference. As shown in Table 5, TCL has
slightly lower FPS compared to GroupViT or MaskCLIP,
due to the relatively high resolution of segmentation masks.
This trade-off between mask resolution and FPS can be con-
trolled by the design of the grounding decoder, but we do

Classes bird boat bottle dog aeroplane bird

Original ’f
images
CLIP 26.8
scores
Masked ’_’{
images
CLIP 30.4 29.9 20.5 28.5 25.6 26.8
scores (+2.9) (+0.9) (+2.6) (+3.6) (+0.4) (=)

Figure 8. Qualitative examples on the robustness of CLIP for
masked images. The first and second rows show natural (non-
masked) and masked images, respectively. The number below
each image indicates CLIP score between the image and the cor-
responding class.

not investigate this further, as it is outside the scope of this
study. ReCo [28] shows very low FPS due to its retrieval
process, which involves retrieving similar images from the
ImageNet dataset [25] and co-segmenting them. Note that
there are many methods to reduce the computational cost of
TCL, e.g., utilizing depthwise convolution instead of stan-
dard convolution [7], but it is not the focus of this study and
is left for future work.

Efficiency-aware designs of TCL. In contrastive learning,
the image-text alignment requires B x B matching, where
B denotes either the batch size in training or the number of
target classes in testing. This quadratic operation is a major
bottleneck when scaling up the batch size. To address this,
CLIP [23] uses a late fusion architecture to minimize the
B x B operation. In this architecture, the encoders are de-
coupled, and the encoded embeddings are combined at the
end of the network, making the model efficient in both train-
ing and inference. We also employ the late fusion architec-
ture following CLIP for efficiency. In addition, since TCL,
requires additional encoding of text-grounded images (x"),
we use X from only positive pairs (=B encodings), and
bypass B x B encodings by introducing TCL; to compute
v/ without any additional encoding. We further improve ef-
ficiency by freezing encoders and reusing text embeddings.
As a result, our entire training time is about 12 hours, and
our inference throughput is comparable to MaskCLIP or
GroupViT. Nevertheless, it is also worth noting that scal-
ing up TCL is more challenging than CLIP since the B x B
mask is a spatial tensor (B x B x H x W), unlike CLIP. Em-
pirically, we found that algorithmic improvements on the
scale should be considered to scale up to B > 8,192.

E. Additional Details and Experiments

CLIP with masked images. TCL implicitly assumes that
CLIP can address masked images robustly. While CLIP is
widely known for its strong robustness [23], it is not yet



Methods VOC20 Context59 Stuff | Avg.
ViL-Seg 34.4 16.3 16.4 | 22.4
ReCo 57.9 32.0 18.4 | 36.1
GroupViT (RedCaps) | 79.0 49.2 16.1 | 48.1
MaskCLIP 73.0 56.5 21.9 | 50.5
TCL (Ours) | 845 620  27.6|58.0
Table 6. Zero-shot segmentation performance for partial

classes. The numbers of ViL-Seg are adopted from the original
paper [19]. We use the proposed unified evaluation protocol for
the other results.

clear how well CLIP can handle masked images. As such,
we investigate CLIP scores between masked images and
positive texts in Fig. 8. The results indicate that CLIP can
address masked images. Interestingly, the scores tend to be
improved, especially for the images with complex context
(columns 1, 3, and 4 of Fig. 8). The masks remove noisy
context and help to focus on the target object, leading to
improved scores.

Details on the comparison methods. In the quantitative
evaluation, we include the variants of the comparison base-
lines for an extensive comparison; the GroupViT variants
from the YFCC and RedCaps checkpoints [30] and the
MaskCLIP variants by the refinement process (key smooth-
ing and prompt denoising). For the backbone of MaskCLIP,
we use ViT-B/16 since its reported performance is better
than ResNet-50 [33]. For the qualitative comparison, we
choose the quantitatively best variant for each method.

Comparisons with zero-shot semantic segmentation
methods. We provide an extensive and unified compari-
son in Table I, but the comparison does not include non-
open-sourced methods. To the best of our knowledge, ViL-
Seg [19] is the only non-open-sourced method for open-
world semantic segmentation. We compare the zero-shot
segmentation performance following the evaluation proto-
col of ViL-Seg. In this evaluation protocol for zero-shot se-
mantic segmentation, only partial classes are used: 5 classes
(potted plant, sheep, sofa, train, tv-monitor) for PASCAL
VOC20, 4 classes (cow, motorbike, sofa, cat) for PASCAL
Context59, and 15 classes (frisbee, skateboard, cardboard,
carrot, scissors, suitcase, giraffe, cow, road, wall concrete,
tree, grass, river, clouds, playingfield) for the COCO-Stuff
dataset. Therefore, we additionally provide the compari-
son results under the partial classes protocol. As shown in
Table 6, TCL achieves state-of-the-art performance with a
large margin in every dataset again.

F. Case Study on Failures

Errors of TCL. We investigate the failure cases of TCL via
various qualitative examples. First, TCL undergoes diffi-

culty in capturing segment boundaries accurately. For ex-
ample, in Fig. 9b, the predicted segment of the “mountain”
class includes part of the sky region, and the “cell phone”
segment contains the right hand and arm regions. This is
a fundamental challenge of unsupervised open-world seg-
mentation; the absence of dense annotation makes precisely
capturing a segment boundary extremely difficult. Although
the proposed method remarkably improves the segmenta-
tion performance compared with previous methods, this
case study reveals that there are still many areas to be im-
proved. Furthermore, despite the help of the smooth prior
loss, the predictions still tend to be noisy, e.g., “sea” or “hair
drier” in Fig. 9b.

Ambiguity in benchmarks. On the other hand, we also
find crucial issues in the current benchmark datasets: ambi-
guities in the class label set and scene semantics. In par-
ticular, there are lots of class labels with similar seman-
tics, especially in the datasets with a large vocabulary, e.g.,
COCO-Stuff (171 classes) [3] or ADE20K (150 classes)
[32]. Mostly the labels have different semantics in detail,
but the distinction between the labels can be ambiguous de-
pending on how the image captures the scene. For example,
it is hard to distinguish “clouds” and “fog” in Fig. 9a and
“hill” and “mountain” in Fig. 9b. Also, there are labels
with superset-subset relations. For instance, the COCO-
Stuff dataset has “broccoli”, “vegetable”, and “food-other”
classes. In the supervised setting, a model can address this
issue by training only if there is labeling consistency be-
tween images. However, in the open-world scenario, such
superset-subset relations cause significant ambiguity. Fur-
thermore, a more frequent ambiguity raises when a seg-
ment has multiple semantics. More proper descriptions of
the “clouds” and “grass” segments in Fig. 9a are “foggy or
cloudy mountain” and “bushes on the grass”, respectively.
However, ground truth (GT) labels represent only part of
the entire semantics. As with the superset-subset relation
case, benchmarks for the open-world scenario require ad-
ditional consideration to address such ambiguities. In this
study, we propose a unified evaluation protocol to compare
the existing methods fairly, but it only unifies the evaluation
protocol and simply employs existing benchmark datasets.
This analysis suggests the need for further advanced bench-
marks dedicated to open-world scenarios in the future.

G. Analysis on Model Behavior

In this section, we investigate how the learned TCL
model generates different segmentation masks depending
on the input text prompts. As shown in Fig. 10, the model
tends to capture the intended region better when the in-
put text prompt is more specific. Although this charac-
teristic can cause performance degradation when evaluat-
ing the model on a fixed benchmark, it also improves the
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Figure 9. Ambiguous error cases. The color map of a negligible region is omitted. Although different from the ground truth (GT), there
are many cases that can be considered correct. The segments in the color map are semantically correct despite of difference with GT, while
the errors indicate clearly incorrect predictions.
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Figure 10. TCL behaviors depending on the specificity of the
prompts. The red-colored region indicates the segmentation re-
sults of the given text prompts. The more specific the prompt, the
better the segmentation result.

controllability of the model. We can exploit this controlla-
bility to maximize the benchmark performance, e.g., class
name expansion. However, we do not employ these dataset-
dependent tricks to prevent the overestimation of the model
performance, as described in Sec. 4.1.

H. Additional Qualitative Results
H.1. Qualitative Examples on Complicated Scene

Qualitative comparison on PASCAL VOC in Sec. 4.3
visualizes the performance difference between comparison
methods. However, the VOC dataset tends to be object-

oriented and its images are generally composed of one or
two segments. In this section, we qualitatively compare
open-world segmentation methods in complicated scenes.
Figs. 11 and 12 show examples including at least 3 seg-
ments from the Cityscapes and COCO-Stuff datasets. As
shown in the figures, GroupViT [30] and MaskCLIP [33]
tend to generate a small number of segments. It makes
the results less noisy but causes a large error. For exam-
ple, in Fig. 11, MaskCLIP fails to segment “building” re-
gions and GroupViT misidentifies “road” as “traffic light”.
In contrast, ReCo [28] suffers from noisy prediction. Our
TCL also generates partially noisy results, but it is relatively
cleaner and better than the comparison baselines. It is also
worth noting that the image resolution of the unified evalua-
tion protocol is relatively smaller than the widely used pro-
tocols for Cityscapes. We resize a shorter side of an image
to 448 with keeping the aspect ratio, resulting in 448 x 896.
In contrast, 1024 x 2048 is the widely used resolution for
the Cityscapes dataset [6,29]. Increasing the resolution can
help recognize small objects, e.g., the persons in Fig. 11.

H.2. Additional Qualitative Examples in the Wild

Fig. 13 shows additional qualitative examples from web
images in the wild. In this experiment, we investigate the
discrimination capability of the model in various aspects:
proper nouns (Frodo, Gandalf, Pyramid, Sphinx, Samwise,
Gollum, Taj Mahal, Batman, Superman), colors with the
same object (red, green, yellow bananas), letters (MMU,
Turkish, Fighter), and subclasses (Corgi, Shepherd). The
results show that our model can recognize and segment var-
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Figure 11. Additional qualitative examples on Cityscapes.

ious concepts in the wild. For the baseline models, the
results show similar tendencies with the in-the-wild exam-
ples in Sec. 4.3. Contrary to the quantitative evaluation in
fixed benchmarks, ReCo [28] generates a relatively plausi-
ble segmentation map compared with GroupViT [30] and
MaskCLIP [33].
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Figure 12. Additional qualitative examples on COCO-Stuff. Color map is omitted since COCO-Stuff has 171 classes.
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Figure 13. Additional qualitative examples in the wild.



