
Supplementary Materials for
Rebalancing Batch Normalization for

Exemplar-based Class-Incremental Learning

Sungmin Cha1, Sungjun Cho2, Dasol Hwang2, Sunwon Hong1, Moontae Lee2,3, and Taesup Moon1,4,5*

1Department of ECE, Seoul National University 2LG AI Research 3University of Illinois Chicago
4ASRI / INMC / IPAI / AIIS, Seoul National University 5SNU-LG AI Research Center

sungmin.cha@snu.ac.kr, {sungjun.cho, dasol.hwang}@lgresearch.ai,
zghdtnsz96@snu.ac.kr, moontae.lee@lgresearch.ai, tsmoon@snu.ac.kr

1. Implementation details of TBBN
There are some considerations to implementing our

TBBN in exemplar-based CIL. Firstly, in order to use TBBN,
the values for Bc, Bp, and information about task changes
are required, and the ratio Bc

Bp
must be an integer. However,

we believe that this information is readily available and ad-
justable in a general offline CIL scenario, as already shown
in [1,13]. Secondly, it should be noted that not all adaptively
determined values for r can reshape a given feature map. For
instance, when Bc

r is not an integer, the tensor reshape oper-
ation FRS cannot be applied. We overcome this limitation
by using a simple rule for determining r. After calculating
r using Equation (6) (as presented in the manuscript) at the
beginning of each task training, we set a feasible r∗ using
the following rule:

r∗ =

{
r, if r ∈ CD(Bc, Bp)
M(Bc, Bp, r), otherwise (1)

where M(Bc, Bp, r) = max{r̂ : r̂ ∈ CD(Bc, Bp)∧r̂ < r}
and CD(·, ·) denotes a set of common divisors between two
values. Although r∗ is not the exact optimal value for our
TBBN, we already experimentally confirmed that using r∗

is also effective for most CIL experiments in the manuscript.
Finally, it should be noted that there is no difference between
the original BN and our TBBN in the test phase because
TBBN also maintains µ, σ2, γ, β ∈ RC during the training
phase.

2. Evaluation Metrics
Let at,i ∈ [0, 1] denote the accuracy on the test set of

task i after training on the first t tasks. The final accuracy
Af = 1

T

∑T
i=1 aT,i measures the classification accuracy of

the model at the end of training averaged across all tasks, and

*Corresponding author (E-mail: tsmoon@snu.ac.kr)

the average accuracy Aa = 1
T

∑T
t=1

(
1
t

∑t
i=1 at,i

)
mea-

sures the average accuracy until task T . Note that while these
two metrics gauge the discriminative performance of the CIL
pipeline, they do not reflect the stability-plasticity aspect, for
which the following two metrics have been designed. The
forgetting measure F = 1

T

∑T
i=1 maxt∈[i+1,T ](ai,i − at,i)

proposed by [3] measures the degree of forgetting by averag-
ing the maximum decrease in accuracy of all tasks through-
out the course of training. Lastly, the learning accuracy
Al =

1
T

∑T
i=1 ai,i proposed by [11] measures the plasticity

of the model by averaging the accuracy of each task immedi-
ately after training on that task. We report all measurements
averaged across three runs with different seeds.

3. Additional Experimental Results

3.1. Accuracy curves

To visualize the task accuracies during training, Figure 1
displays the average classification accuracy across all previ-
ously seen tasks throughout the training process (Af after
each task). Our observations show that TBBN improves the
average accuracy at every step of training compared to BN,
whereas CN exhibits fluctuations that result in performance
degradation when applied to AFC and PODNet.

3.2. Experimental results for making a balanced
batch with data augmentation

To confirm the novelty of TBBN, we conducted an ex-
periment for making a balanced batch with data augmen-
tation for sampled data in the exemplar memory. We se-
lected powerful augmentation methods which are widely
used for self-supervised contrastive learning, consisting of
RandomResizedCrop, RandomHorizontalFlip, ColorJitter
and RandomGrayscale. To make the balanced batch at each
t(> 1)-th task’s training time, we augmented each data sam-

1



(a) CIFAR-100 (10 Tasks) (b) ImageNet-100 (10 Tasks)

Figure 1. Accuracy curves during training with various CIL algorithms. X-axes show the number of tasks t, and the Y-axes show accuracies
averaged across already seen t number of tasks. Replacing the BN layers (solid lines) with TBBN (dotted lines) leads to consistently better
accuracies throughout training.

ple in the exemplar memory for (t − 1) × 3 times. This is
because we set the ratio between the data points from the
current task and those from the exemplar memory to 3 : 1,
and the sampled batch from the exemplar memory always
contains data from t− 1 numbers of the previous task. Ta-
ble 1 shows the average result on CIFAR-100 for FT with
balanced augmentation (FT + BalAug) with ordinary BN
for 3 seeds. We observe that this baseline does not bring a
positive performance gain, compared to the FT+BN in (Ta-
ble 1, manuscript). We believe that the FT+BalAug has two
limitations: 1) Despite the augmentation, the model ends up
over-fitting to the samples in the exemplar memory due to
the scarcity of data, and 2) t× 3 times of augmentation for
previous task’s data enlarge the size of mini-batch for each
task, causing the computation and memory cost increase
during training. We believe this result further demonstrates
the effectiveness of our TBBN for the exemplar-based CIL.

Table 1. Experimental results of FT + BalAug (with BN).

Acc / FM / LA CIFAR-100 (T = 10)
FT + BalAug 25.54 / 42.76 / 68.27

3.3. Experimental results for other CIL protocol
(using base task)

We conducted experiments for another CIL scenario,
which involves learning half of all classes as the first task
(base task) and then incrementally learning the remaining
tasks, as proposed in [4, 5]. We verified the effectiveness of
TBBN for FT, LUCIR, and SS-IL on CIFAR-100 (with three
seeds) in Table 2. The scenario considered here involves six

Table 2. Experimental results for various representative offline CIL
methods in 6 tasks scenario (starting from learning the base task).
Bold indicates the best performance in each metric.

Method CIFAR-100 w/ ResNet-32
Af (↑) Aa(↑) F (↓) Al(↑)

FT
+BN 35.86 45.71 37.14 77.32
+CN 36.07 46.18 38.75 79.25

+TBBN 37.36 46.95 37.33 79.30

EEIL
+BN 36.93 46.63 35.39 78.17
+CN 38.44 47.45 33.91 78.23

+TBBN 38.83 47.82 34.61 78.62

LUCIR
+BN 38.22 50.65 22.87 66.33
+CN 38.20 49.74 24.99 68.32

+TBBN 39.54 50.95 23.27 67.57

SSIL
+BN 45.69 53.03 8.55 53.63
+CN 45.12 52.59 7.63 51.55

+TBBN 46.61 53.48 8.94 55.16

tasks, where the model learns 50 classes as the base task
and then continues to learn five tasks, each consisting of 10
classes. Note that this CIL scenario does not exactly corre-
spond to the situation considered by TBBN (class-balanced
tasks, see Section 3 of the manuscript). Nonetheless, the
experimental results presented in Table 2 demonstrate that
our TBBN can be successfully applied to several baselines,
improving their performance compared to CN.



Table 3. Experimental results (20 tasks).
Aa(↑) CIFAR-100 ImageNet-100

+BN 29.66 39.06
FT +CN(G = 16) 30.12 37.82

+TBBN 34.45 43.84
+BN 35.11 37.89

EEIL +CN(G = 16) 35.49 38.07
+TBBN 39.32 42.30
+BN 34.36 39.34

LUCIR +CN(G = 16) 34.83 36.54
+TBBN 37.07 39.90
+BN 36.31 43.84

SSIL +CN(G = 16) 36.00 43.12
+TBBN 38.55 46.08

3.4. Additional results from a 20-task setting

We also present additional results from a 20-task setting
in Table 3. We see that TBBN brings significant performance
boost in various CIL scenarios.

4. Details of Experimental Settings

In the experiments using FT, EEIL [2], LUCIR [5], and
SSIL [1], we followed the CIL benchmark code proposed
by [8]. The network was trained using SGD with an ini-
tial learning rate of 10−1 and weight decay of 10−4, and
a mini-batch size of 64. The number of epochs and sched-
ule for adjusting the learning rate were set differently for
each dataset and scenario. We used random sampling for
ImageNet-100 experiments and herding [10, 12] for CIFAR-
100 experiments. Table 4 provides detailed information on
experimental settings and hardware used.

Table 4. Details of experimental settings.

10 classes × 10 tasks 5 classes × 20 tasks
CIFAR-100 ImageNet-100 CIFAR-100 ImageNet-100

epochs per task
epoch for lr scheduling

lr decay
mini-batch size

model
python version
pytorch version
CUDA version

CuDNN version
GPU

160
[80, 120]

1/10
64

ResNet-32
3.7

1.7.1+cu110
11.2
8.1.1

TITAN XP

100
[40, 80]

1/10
64

ResNet-18
3.7

1.7.1+cu110
11.2
8.1.1

RTX A5000

160
[80, 120]

1/10
64

ResNet-32
3.7

1.7.1+cu110
11.2
8.1.1

1080Ti

100
[40, 80]

1/10
64

ResNet-18
3.7

1.7.1+cu110
11.2
8.1.1

1080Ti

In the case of experiments using PODNet [4] and AFC [6],
we obtain the experimental results by implementing their
official code. Also, we run each method with the default
hyperparameter setting proposed in the official code.

5. Pseudo code of TBBN

Algorithm 1 shows the Pytorch-style pseudo algorithm
for TBBN’s forward function. It is important to note that
TBBN does not require hyperparameter tuning and only uses
easily accessible information such as the task number (t) and
the number of sampled current (Bc) and memory (Bp) data.

6. Experiments for Online CL.
Table 5 presents the online CL results for CIFAR-100.

We follow the experimental settings (ResNet-18, 20 tasks,
single epoch and 2000 exemplars) proposed in [7], and only
conduct experiments using finetuning (FT) for comparison.
Our results show that CN with (G = 8) outperforms TBBN

Table 5. Experimental results (20 tasks).

Aa(↑) Class-IL Task-IL

FT

+BN 10.77 64.39
+CN (G = 8) 10.94 68.70
+CN (G = 16) 8.43 64.23
+TBBN 10.12 67.43

in both class-IL and task-IL. However, the performance gain
of CN for class-IL is not as substantial as in [9] This trend
was also shown previously with SplitTinyIMN in Table 4
of [9].



Algorithm 1 Pytorch-style pseudo algorithm of the forward function of TBBN. Note that running_mean and running_val
(∈ RC ) are initialized to 0 and 1, and gamma and beta (∈ RC ) are initialized to 1 and 0, respectively. m is the hyperparameter
for the exponential moving average of running mean and standard deviation, and we set it to 0.9

1: def TBBN_forward(x, t, Bc, Bp, train):
2: if train:
3: if t ̸= 1: # set r
4: r = Bc/Bp · (t− 1)
5: else:
6: r = 1
7: if r not in CD(Bc, Bp): # find r∗, CD returns common divisor of given two values (check Equation (1))
8: r = M(Bc, Bp, r)
9:

10: N,C,H,W =x.shape
11: # make balanced batch
12: curr_batch = x[:Bc].reshape(Bc/r, C·r, H,W )
13: prev_batch = x[Bc:].repeat(1,r, 1, 1)
14: bal_batch = concat((curr_batch, prev_batch), dim = 1)
15:
16: # calculate balanced mean and variance
17: bal_mean = bal_batch.mean(dim = [0, 2, 3])
18: bal_val = bal_batch.val(dim = [0, 2, 3])
19:
20: # normalize reshaped input batch
21: bal_batch= (bal_batch − bal_mean)/(bal_val +ϵ).sqrt()
22: # affine-transform the normalized batch
23: bal_batch=bal_batch∗gamma.repeat(r) + beta.repeat(r)
24:
25: # reshape bal_batch to the original shape
26: bal_batch_curr = bal_batch[: Bc/r].reshape(Bc, C,H,W )
27: bal_batch_prev = bal_batch[Bc/r:].reshape(Bp, r, C,H,W ).mean(dim=1)
28: x = concat((bal_batch_curr, bal_batch_prev), dim=1)
29:
30: # update running_mean and running_val
31: running_mean_temp = running_mean.repeat(r)
32: running_val_temp = running_val.repeat(r)
33: running_mean_temp = m ∗ running_mean_temp +(1−m)∗ bal_mean
34: running_val_temp = m ∗ running_val_temp +(1−m)∗ bal_val
35:
36: running_mean = running_mean_temp.reshape(r, C).mean(dim = 0)
37: running_val = running_val_temp.reshape(r, C).mean(dim = 0)
38:
39:
40: else:
41: x= (x− running_mean)/(running_val +ϵ).sqrt()
42: x=x∗gamma + beta
43:
44: return x

References

[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,
Hyojun Kim, and Taesup Moon. Ss-il: Separated softmax
for incremental learning. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (CVPR), pages
844–853, 2021.

[2] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incremen-



tal learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 233–248, 2018.

[3] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 532–547, 2018.

[4] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas
Robert, and Eduardo Valle. PODNet: Pooled outputs distilla-
tion for small-tasks incremental learning. In Proceedings of
the European Conference on Computer Vision (ECCV), pages
86–102, 2020.

[5] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
831–839, 2019.

[6] Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-
incremental learning by knowledge distillation with adaptive
feature consolidation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 16071–16080, 2022.

[7] Zheda Mai. Online Continual Learning in Image Classifica-
tion. PhD thesis, University of Toronto (Canada), 2021.

[8] Marc Masana, Xialei Liu, Bartłomiej Twardowski, Mikel
Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-
incremental learning: Survey and performance evaluation on
image classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[9] Quang Pham, Chenghao Liu, and Steven HOI. Continual
normalization: Rethinking batch normalization for online con-
tinual learning. In International Conference on Learning
Representations (ICLR), 2022.

[10] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl,
and Christoph H Lampert. iCaRL: Incremental classifier and
representation learning. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2001–2010, 2017.

[11] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu,
Irina Rish, Yuhai Tu, and Gerald Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[12] Max Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 1121–1128, 2009.

[13] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale incre-
mental learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
374–382, 2019.


	. Implementation details of TBBN
	. Evaluation Metrics
	. Additional Experimental Results
	. Accuracy curves
	. Experimental results for making a balanced batch with data augmentation
	. Experimental results for other CIL protocol (using base task)
	. Additional results from a 20-task setting

	. Details of Experimental Settings
	. Pseudo code of TBBN
	. Experiments for Online CL.

