
Supplementary Material for LayoutDM

Due to limited space, our paper does not show all the
comparison results. In this document, we will give more
details about our experiments and present additional results.

1. Datasets
We summarize the statistics of the datasets used in our

paper in Table 1. In all our experiments, we follow the fol-
lowing settings for training, validation and testing. For Pub-
layNet, COCO, and TextLogo3K, we use 95% of the official
training split for training, the rest for validation, and the of-
ficial validation split for testing. For Rico and Magazine,
we use 85% of the dataset for training, 5% for validation,
and 10% for testing.

Dataset
# label
types

Max.
# elements

# train. # val. # test.

Rico 13 9 17,515 1,030 2061
PublayNet 5 9 160,549 8,450 4,226
Magazine 5 33 3,331 196 392
COCO 183 8 71,038 3,739 3,097
TextLogo3K N/A 20 3,011 159 300

Table 1. Statistics of the datasets used in our experiments.

2. About Evaluation Metrics
Previous work often uses different metrics to evaluate the

visual quality and realism of the generated layouts. Though
some metrics have the same name (such as Alignment and
Overlap), they are computed in different ways. In our paper,
we use the metrics in [4] to evaluate our method, which is
different from those in BLT [5]. Here, we detail how to
compute these metrics.

2.1. Metrics in our paper

In our paper, we follow the guidance in [4] to evaluate
our proposed method. Four evaluation metrics are used to
evaluate the quality of the generated layouts: FID [4], Max.
IoU, Alignment [8] and Overlap [8].

FID [4] measures the realism and accuracy of the gener-
ated layouts. To compute FID, we train a binary layout clas-
sifier to discriminate between real layouts and noise added
layouts, and use the intermediate features of the network as

the representative features of layouts. For a fair comparison,
we use the pre-trained neural network in [4] to calculate the
FID metrics.

Max. IoU [4] is defined between two collections of gen-
erated layouts and references. We compute the Max. IoU
metric as in [4]. In our paper, the layout geometric sequence
g = (g1, · · · , gN ) corresponds to the layout B = {bi}Ni=1

in [4], and the layout attributes sequence f = (f1, · · · , fN )
corresponds to the label set li, i = 1, · · · , N in [4].

Alignment [8] computes an alignment loss with the intu-
ition that objects in graphic design are often aligned either
by center or edge. Denote θ = (xL, yT , xC , yC , xR, yB)
as the top-left, center and bottom-right coordinates of the
bounding box, we calculate the Alignment loss for each lay-
out as follows:
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where g(x) = − log(1 − x), N is the number of elements
in the layout, and ∆x∗

i (∗ = L,C,R) is computed as:
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∆y∗i (∗ = T,C,B) can be computed similarly. The final
value is multiplied by 100× for visibility following [4].

Overlap [8] measures the total overlapping area between
any pair of bounding boxes in a layout. We compute the
Overlap metric for each layout as follows:

Lover =
1

N
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∑
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where si∩sj denotes the overlapping area between element
i and j. N is the number of elements in the layout. The final
value is multiplied by 100× for visibility following [4].

2.2. Metrics in BLT

In this paper, we also follow the guidance of BLT [5] to
evaluate our proposed method. The evaluation metrics used
in BLT [5] are different from those in [4]: IoU, Alignment,
and Overlap.
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IoU [5] measures the intersection over the union beween
the generated bounding boxes. Following [5], an improved
perceptual IOU is used. It first projects the layouts as if they
were images then computes the ovarlapped area divided by
the union area of all objects. A toy sample images is pre-
sented in Fig. 1 1

Figure 1. A toy layout sample for the IoU computation. The areas
of objects A, B and C are 5, 1, 1, the overlapped area of B and C
are 0.5. IoU 0.5
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Alignment [6] measures the alignment among design el-
ements. The average Alignment on a collection of layouts
is computed using:
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where ND is the number of generated layouts, cdk is the k-th
component of the d-th layout. In addition, l, m, and r are
alignment functions where the distances between the left,
center, and right of elements are measured, respectively. [5]
uses L1 distance as the distance measure but does not adopt
the function g(x) = − log(1 − x) to process the distance.
[5] also do not normalize the Alignment by the number of
elements N or multiply the value by 100×. This leads to
different results using the two different Alignments.

Overlap [7] is the percentage of total overlapping area
among any two bounding boxes inside the whole page.

Lover =

N∑
i=1

∑
∀j ̸=i

si ∩ sj
si

[5] does not normalize the values with the number of el-
ements N or multiply the value by 100×. This leads to
different results using the two different Overlaps.

3. Comparison with BLT
BLT [5] is another method for conditional layout gener-

ation, which is recently published in ECCV2022. Due to

1Metric description and sample image are cited from the appendix
of [5]

limited space, we only compare our LayoutDM with BLT
on the PublayNet dataset. Here, we show more compari-
son results on more datasets using the metrics of BLT un-
der the setting of conditional layout generation. The SOTA
methods being compared include LayoutVAE [3], Layout-
Transformer [2], VTN [1], NDN [6], LayoutGAN++ [4]
and BLT [5]. Since most SOTA methods (except Layout-
GAN++) have no available public implements, we directly
cite the experimental results in [5]. All the experiments run
five times, and the mean and standard deviation over five
trials are reported. The full comparison results are shown
in Tab. 2. As we can see, our LayoutDM significantly out-
performs SOTA methods on PublayNet, Rico, and Maga-
nize.

4. Why LayoutDM has lower FID value than
“Real Data”?

The reason lies in the definition of FID metric. Accord-
ing to [4], the FID value measures the distribution distance
between the layouts generated by the models and the real
layouts in test set. For “real data”, the FID value is com-
puted using the real layouts in validation set and those in
test set. Since we generate the layouts conditioned on the
attributes of layouts in test set, the distribution of generated
layouts should be more similar to that of the test set than
validation set. So, our method has a lower FID value than
“real data”.

Moreover, to verify our analysis, we generate layouts
conditioned on the layout attributes in the validation set,
and compute the FID value of our method (denoted as
“Gen./Val. Set” in the following table). The result is shown
in Tab. 4. In this case, we can observe that the FID value of
our method is close to that of “Real data”, which is consis-
tent with our analysis.

5. Ablation study on positional encoding.
Qualitative results. In this paper, we don’t consider the

order of designed elements on a canvas, so our LayoutDM
omits the positional encoding in its transformer component.
To evaluate the impact of positional encoding, we train a
LayoutDM model with positional encoding as a reference
(denoted as LayoutDM/PE). We randomly shuffle the order
of elements in the input sequence in all three data sets, and
evaluate the LayoutDM and LayoutDM/PE in the shuffled
sequence.

The results are shown in Fig. 2. As we can see, after
removing the positional encoding, the model is no longer
aware of the positional information in the input sequence,
and thus can still generate reasonable results conditioned on
the shuffled input sequence. If we use positional encoding
in our model, the model (LayoutDM/PE) will interpret the
original sequence and the shuffled sequence as completely



Dataset PublayNet Rico Magazine
Model IoU↓ Overlap↓ Alignment↓ IoU↓ Overlap↓ Alignment↓ IoU↓
L-VAE [3] 0.45±1.3% 0.15±0.9% 0.37±0.7% 0.41±1.5% 0.39±2.3% 0.38±1.9% \
NDN [6] 0.34±1.8% 0.12±0.8% 0.39±0.4% 0.37±1.7% 0.36±1.9% 0.41±1.6% \
VTN [1] 0.21±0.6% 0.06±0.2% 0.33±0.4% 0.30±0.1% 0.30±0.3% 0.32±0.9% 0.18±1.8%

Trans. [2] 0.19±0.3% 0.06±0.3% 0.33±0.3% 0.31±0.2% 0.33±0.8% 0.30±0.8% 0.20±0.8%

BLT [5] 0.19±0.2% 0.04±0.1% 0.25±0.7% 0.30±0.4% 0.23±0.2% 0.20±1.1% 0.18±0.6%

LayoutGAN++ [4] 0.084±1.1% 0.05±0.3% 0.24±0.5% 0.22±1.2% 0.18±0.85% 0.25±0.6% 0.061±1.7%

LayoutDM(Ours) 0.0053±0.5% 0.01±0.1% 0.22±1.2% 0.22±0.7% 0.17±0.7% 0.24±1.2% 0.055±0.9%

Real Data 0.00097 0.0006 0.283 0.19 0.167 0.277 0.054

Table 2. Quantitative comparison using the evaluation metrics in BLT. “Trans.” and “L-VAE” denote “LayoutTransformer” and “Layout-
VAE”. The metrics computed with the test datasets are shown as Real Data.

Dataset Rico
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutDM/PE (shuffled) 14.97±0.48 0.35±0.00 0.42±0.05 55.65±0.31
LayoutDM/PE (original) 3.26±0.08 0.48±0.01 0.32±0.05 57.45±0.27
LayoutDM (shuffled) 4.04±0.10 0.46±0.00 0.29±0.02 58.32±0.23
LayoutDM (original) 3.95±0.09 0.46±0.00 0.28±0.04 58.59±0.40

Dataset PublayNet
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutDM/PE (shuffled) 29.83±0.54 0.34±0.01 0.28±0.01 16.03±0.27
LayoutDM/PE (original) 3.96±0.08 0.44±0.00 0.14±0.00 3.93±0.09
LayoutDM (shuffled) 4.15±0.10 0.44±0.00 0.14±0.01 4.23±0.07
LayoutDM (original) 4.17±0.12 0.44±0.00 0.14±0.01 4.13±0.05

Dataset Magazine
Model FID↓ Max. IoU↑ Alignment↓ Overlap↓
LayoutDM/PE (shuffled) 19.23±0.54 0.24±0.00 0.89±0.01 54.59±1.35
LayoutDM/PE (original) 9.44±0.13 0.29±0.00 0.84±0.02 35.64±0.68
LayoutDM (shuffled) 10.05±0.19 0.28±0.00 0.78±0.04 33.76±0.81
LayoutDM (original) 9.75±0.40 0.29±0.00 0.79±0.02 32.74±0.58

Table 3. Quantitative results on the effect of element order.

Gen. / Test set Gen. / Val. set Real data
FID↓ 4.04±0.08 10.86±0.04 9.54

Table 4. FID comparison on PublayNet. Gen. denotes “Gener-
ated” and Val. denotes “Validation”.

different inputs and thus produces results of bad quality.

Quantitative results. Table 3 shows the quantitative re-
sults. As one can see, shuffling the order of elements does
not affect the model without positional encoding, while the
performance of the model with positional encoding is sig-
nificantly affected. This proves that the performance of our
model is independent of the order of the elements in the in-
put sequence.

6. More Qualitative Results

This section presents more qualitative results. We show
the comparison results of three models in Fig. 3, namely our
implemented conditional VTN, LayoutGAN++ and Lay-
outDM. As one can see, our model has higher quality in
terms of alignment and overlap than the other two methods.
The layouts generated by our LayoutDM are very similar to
the real data.

7. More Qualitative Comparisons on Diversity

We provide more quantitative comparisons on diversity
in Fig. 4. It can be observed that compared to the other two
methods, our model has better diversity while maintaining
high quality.



without positional encoding with positional encoding

[0,0,0,0,0,0,0,4,1]

layout attributes sequence

[0,0,4,0,0,1,0,0,0]

original:

shuffled:

Figure 2. Effect of element order of input sequence. We use index “0” , “1” and “4” to represent element category label “Text”, “Title” and
“Figure”.

Figure 3. Additional conditional generation comparison. We show three samples for each model conditioned on the same element category
labels. Real design are shown as Real.
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