
Persistent Nature: A Generative Model of Unbounded 3D Worlds
Supplemental Material

In supplemental materials, we investigate an alterna-
tive 3D feature representation based on extendable triplane
units A. We provide additional implementation details of our
method in Section B, additional ablations in Section C, and
we provide further discussion on our model in Section D.

A. Extended Triplane Variation
Instead of decoding the scene from a 2D layout feature

grid and height of a 3D point above this layout plane, we also
experiment with a model variation that adds vertical support
planes parallel to the XY and YZ planes. Thus, the layout
features are described by a 2D extended XZ layout feature
grid, and sets of orthogonal support planes shown in pink in
Fig. 1-left. Decoding a given 3D point projects the point to
the XZ plane, the four nearest vertical planes (two parallel
to XY and two parallel to YZ, which are weighted linearly
according to the distance of the point from each plane).

Qualitatively, the triplane model achieves more geometry
diversity, with more mountainous terrain compared to the
feature layout model. We attribute this to the additional sup-
port provided from the vertical feature planes. Additionally,
the vertical feature planes allow for a lighter decoding net-
work with higher neural rendering resolution, allowing for
faster video rendering and improved temporal consistency
(lower one-step consistency error) due to less reliance on a
2D upsampling operation. We show qualitative examples in
Fig. 2 with video results on our project page, and quantitative
evaluations in Tab. 1. Quantitatively, while this extended tri-
plane variation does not output perform the layout model in
terms of FID, we hypothesize that the FID may be impacted
by two possible factors: first, this model requires inference-
time camera height adjustment to avoid intersecting with
increased complexity of the generated geometry, and second,
interpolation between vertical feature planes qualitatively
produces more muted colors compared to the real image
distribution.

We also investigate the impact of using a projected 3D
noise pattern as input into the extended triplane upsampler,
with results in Tab. 2. While this improves FID and consis-
tency in the layout representation, we find that the benefits
of the projected noise are more limited in the extended tri-
plane setting. Adding projected noise offers improvements
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Figure 1. Diagram of Extended Triplane Representation. The ex-
tended triplane representation adds a sequence of orthogonal verti-
cal feature planes outlined in pink in addition to the ground plane
features outlined in white (left). Each unit consists of a triplane
representation [4] generated from three independent generators –
GXY , GXZ , and GY Z – tied to the same latent code and mapping
network (right). At inference time, the features of each genera-
tor are stitched along the appropriate dimensions using the SOAT
procedure [5].

Model FID Consistency Render
Time (s)

Ctrain Cforward Crandom

Extended Layout 21.42 26.67 23.39 3.56 8.49
Extended Triplane 24.47 34.89 34.76 2.29 0.16

Table 1. Extended Layout vs. Extended Triplane While the extended
layout representation presented in the main paper attains better im-
age quality (lower FID scores), the extended triplane representation
offers improved consistency (lower one-step consistency error)
and dramatically faster video rendering (as the layout model re-
quires supersampling for video smoothness). We hypothesize that
inference-time camera adjustments and interpolation between ver-
tical feature planes may negatively impact FID for the extended
triplane model, despite its ability to generate more complex and
diverse landscape geometry.

in FID, but also a small increase in consistency error. Quali-
tatively, the model outputs are similar with and without the
projected noise, perhaps attributed to decreased reliance on
the upsampling operation.
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Figure 2. Extendable Triplane Visualization. Qualitative examples of rendering from the extendable triplane representation. This representa-
tion results in larger scene and geometry diversity compared to the layout feature representation, with improved 3D consistency.

Model FID Consistency
Ctrain Cforward Crandom

Without Noise 24.47 34.89 34.76 2.29
With 3D noise 25.31 33.30 33.28 3.06

Table 2. Effect of 3D Projected Noise Adding projected noise into
the upsampler of the extendable triplane representation offers im-
provements in FID but is slightly more inconsistent, but still more
consistent than the layout model.

B. Additional Methodological Details

B.1. Preprocessing

Dataset Filtering. To remove images in the LHQ [15]
dataset that contain occluding objects close to the camera,
we apply filtering criteria to construct the training dataset.
Using the segmentation output of DPT [14], we detect the
sky region and boundaries of the resulting binary sky mask.
As the segmentation results can include small regions with
inconsistent labels (e.g. small holes in the sky), we remove
all bounded regions with area under 250 pixels to create a
more unified sky mask. Next, using this segmentation mask
we filter out images for which any of the following hold:
(1) there are more than three bounded sky regions, (2) more
than 90% of the scene is not sky pixels, (3) more than 40%
of the upper one-fifth of the image is not sky pixels, and
(4) less than 80% of the lower quarter of the image is not
sky pixels. The first three criteria are meant to filter out

images that contain occluding structures (such as trees or
windows) or images in which there is no sky region present.
The fourth criteria is meant to filter out images taken from
unusual camera angles (such as from underneath a bridge).
Using the monocular depth prediction from DPT, we also
remove images containing too many vertical edges: images
are removed if the 99th percentile of the pixel-wise finite
difference is greater than 0.05, which tends to be indicative
of trees or man-made buildings. Fig. 3 shows examples of
images that were retained for training, and those that were
filtered out.

Disparity Normalization. Using the monocular depth pre-
diction from DPT, we normalize the disparity values between
0 and 1 using the 1st and 99th percentile values per image.
Next, we clip the minimum disparity for non-sky regions
and rescale the disparity values to correspond to the near
and far bounds used in volumetric rendering (see § B.2.2).
We use 0.05 for our clip value and 1/16 for the scale factor;
this means that after normalization, the disparity values for
non-sky pixels range from 1/16 to 1. The disparity for the
sky pixels is clamped at zero.

Camera Poses. We sample training camera poses with a
random (x, z) position within the layout grid, and a rotation
such that the near half of the view frustrum lies entirely
within the training grid. To simulate the forward motion
of InfiniteNature-Zero [10], we move the camera forward
a distance equivalent to 100 steps of InfiniteNature-Zero,
corresponding to roughly half of the scene layout grid. To



(a) Training Images (b) Removed Images

Figure 3. Result of dataset filtering. The dataset filtering step (a) retains images that contain sufficient sky pixels near the top of the image,
and (b) removes images that are not typical images of landscapes. These atypical images include images without sky pixels, or images with
nearby occluding objects such as windows or trees. The filtering criteria is based on sky segmentation and disparity estimation obtained from
DPT [14].

(a) Training camera distribution (b) Cameras after forward motion (c) Random cameras

Figure 4. Illustration of camera distributions. (a) Cameras used for training are sampled with a random translation uniformly over the scene
layout feature grid, with rotation sampled to overlap with this feature grid. To evaluate view extrapolation, we (b) move the cameras forward
a distance equivalent to 100 steps of InfiniteNature-Zero [10], corresponding to roughly halfway across the scene layout grid, or (c) randomly
sample a random translation and random rotation.

evaluate view extrapolation, we randomize the position and
rotation of the cameras at inference time. These settings are
illustrated in Fig. 4.

B.2. Training and Implementation

B.2.1 Training objective

Each stage of our model is trained following the StyleGAN2
objective [9], with a non-saturating GAN loss V and R1

regularization [11]:

V (D,G(z), I) = D(I)−D(G(z)),

R1(D, I) = ||∇D(x)||2,
G = argmin

G
max
D

Ez,I∼D V (D,G(z), I)+

λR1

2
R1(D, I),

(1)

whereG,D refer to the corresponding generator and discrim-
inator networks at each training stage, and x refers to real
images sampled from dataset D. Additional auxiliary losses
for each part of the model are described in the following
sections.

B.2.2 Layout Generator

Our layout generator is based on the architecture from
GSN [6], which is comprised of two components: Gland,
which synthesizes the scene layout grid, and M which de-
codes the 2D layout feature into a 3D feature.

The layout generatorGland follows StyleGAN2 [9], which
generates a 256 × 256 grid of features fland ∈ R32. Gland
contains three mapping layers and the maximum channel di-
mension is capped at 256; all other parameters are unchanged
from StyleGAN2.



The network M is modeled after the style-modulated
MLP from CIPS [1], containing eight layers with a hid-
den channel dimension of 256 and producing features
fcolor ∈ R128. The constant input to M is replaced with
the y-coordinate (height above the ground plane), and the
modulation input is the interpolated feature from fland.

We adapt the rendering procedure of GSN to handle un-
bounded outdoor scenes. For volumetric rendering, we set
the near bound to 1 and the far bound to 16, which corre-
sponds to the scale factor used in disparity normalization
during data preprocessing. Each scene layout feature has a
unit width of 0.15, such that the full width of the feature
grid is 256× 0.15 = 38.4, which is slightly over twice the
far bound distance. We omit positional encoding from M ,
as we found that including positional encoding yielded grid-
aligned artifacts in generated images; we also omit the view
direction input. Camera rays are sampled using FOV = 60◦

with linearly spaced sampling between the near bound and
the far bound. We use inverse-depth (disparity) supervision
rather than depth supervision so that we can represent con-
tent at infinite distances. This also encourages the terrain
generator to create empty space in the sky content, which
will be filled with the skydome generator.

We use the volumetric rendering equations from
NeRF [12], in which the weights wi of the i-th point along a
ray depends on densities σ which is predicted by multi-layer
perceptron M and the distance between samples δ:

αi = 1− exp (−σiδi) , wi = αi exp
(
−

i−1∑
j=1

σjδj
)
. (2)

Our training procedure for the layout decoder follows that
of GSN [6], which provides the real RGB image IRGB and
disparity d (obtained from DPT) to the discriminator I =
{IRGB, d}, and also adds a reconstruction loss on real images
using a decoder network Gφ on discriminator features Dφ:

Lrec = (I −Gφ(Dφ(I)))2. (3)

The full GAN objective follows Eqn. 1 with weights λR1 =
0.01 and λrec = 1000, and we follow the optimizer settings
from StyleGAN2 and train for 12M image samples.

Because the layout decoder tends to generate semi-
transparent geometry, which also causes unrealistic sky
masks, we regularize the geometry following Eqn. 4 in the
main document, and add the sky mask into the discrimi-
nator. We finetune with this additional loss for 400k sam-
ples with λtransparent which linearly increases from zero to
λtransparent = 80 over the finetuning procedure.

B.2.3 Layout Extension

We use the procedure of SOAT [5] in two dimensions to
smoothly transition between adjacent feature grids sampled

from independent latent codes. SOAT proceeds by operating
on 2x2 sub-grids and stitching each layer of intermediate
features in the generator (Fig. 5). To start, we simply con-
catenate the StyleGAN constant tensors, to obtain a feature
grid f0 of size 2H0×2W0, where H0 and W0 are the height
and width of the constant tensor. For each subsequent layer
fl+1, we modulate the weights Gl with each of four corner
latent codes (after applying the mapping network to obtain
the style-code) and apply it in a fully convolutional manner
to fl, obtaining fk,l+1 of size 2Hl×2Wl. Then, we multiply
each of fk,l+1 with bilinear interpolation weights β and take
the sum to obtain fl+1. This procedure is repeated for each
layer of the generator, obtaining a an output feature grid of
size 2H × 2W . To reduce the effect of padding, these output
feature grids are tiled in an overlapping manner, with a 50%
overlap on each side and with weights that linearly decay to
zero away from the center of the tile.
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Figure 5. Layout Extension. We adapt the procedure in SOAT [5] for
2D layout extension. Operating on each layer of the generator, we
take the incoming feature grid fl, and construct the outgoing feature
grid using the generator weights conditioned on each corner latent
code z (the conditioning uses weight modulation on the mapping
network outputs in StyleGAN2 [9]). Then, these four outgoing
feature maps are multiplied with bilinear weights β and the result
is summed, to obtain the blended feature for the next layer fl+1.

B.2.4 Refinement Network

The refinement network Gup uses a truncated StyleGAN2
backbone, which replaces the feature input of the 32 × 32
block with the 32×32 rendered feature fim and initial image
ILR, depth dLR, and sky mask mLR. The skip connection
of the upsampler takes in ILR, dLR, mLR and predicts IHR,
dHR, and mHR. Following the noise injection operation in
StyleGAN2, we replace the image-space 2D noise tensor
with our 3D-consistent projected noise (Eqn. 7 in the main



(a) Accumulated ray density with separate skydome (b) Accumulated ray density without separate skydome

Figure 6. Training without a separate skydome. We supervise the sky content with zero inverse-depth (infinite distance) to ensure that the
camera does not intersect the sky as the layout features are extended. As such, we model content at infinite distances with a separate skydome
model, such that the terrain model treats sky regions as empty space (left). Without the separated skydome, the model is forced to put sky
content at finite distances leading to foggy, semi-transparent content near the camera (right).

document). This network uses two mapping layers, taking
as input the style latent vector from Gland.

We add an additional objective to encourage consistency
between the refined color pixels and the sky mask:

Lconsistency = |dHR − dLR↑|+ |mHR −mLR↑|,

Lsky = exp(−20 ∗
∑
c

|IHR[c]|) ∗mHR.
(4)

The loss Lconsistency encourages the high resolution depth
and mask outputs to match their upsampled low resolution
counterparts (this results in a smoother outcome compared
to downsampling the high resolution outputs). The loss Lsky

encourages pixel colors to be nonzero (reserved for the gray
sky color) when mHR = 1, by summing over the three chan-
nels c of the predicted image IHR; this is meant to encourage
the RGB colors produced refinement network to be con-
sistent with the mask and depth outputs. The refinement
network is trained with the GAN objective (Eqn. 1) with
weights λR1 = 4, λconsistency = 5, and λsky = 100, and the
discriminator loss is applied only on the RGB images.

Due to the computational costs of volume rendering, we
train the refinement network on 32× 32 inputs to produce
256 × 256 outputs. For 30 fps video visualizations, we su-
persample the camera rays at 8x spatial density and apply
depth-based filtering to the noise input to improve video
smoothness; however all metrics in the paper are computed
without supersampling for additional smoothness.

We note that while StyleGAN3 [8] is intended to resolve
the texture sticking effect caused by the noise input in Style-
GAN2, replacing Gup with a StyleGAN3 backbone resulted
in worse image quality in our setting with FID 67.90, com-
pared to FID 21.42 for our final model.

B.2.5 Skydome Generator

The skydome generator takes as input the CLIP [13] em-
bedding of a single terrain image, and predicts a sky output
that is consistent with the terrain. The generator architecture
follows StyleGAN3 [8] adapted with cylindrical coordinates
to generate 360◦ panoramas [3].

For the terrain input, we take the filtered LHQ dataset and
select the non-sky pixels with normalized disparity greater
than 1/16 (this leaves some background mountains to be
predicted). We follow the training procedure from [3] with a
few adaptations. In addition to concatenating the CLIP em-
bedding of the terrain image to the style-code, the generated
sky is composited with the terrain input prior to the discrimi-
nator with 50% probability, which is compared to full RGB
images from LHQ. The 50% compositing behavior ensures
that the bottom of the generated skydome can still appear
realistic (when unmasked), while also matching provided
terrain image (when masked). This portion is trained with the
λR1 = 2 in the GAN objective (Eqn. 1), with randomly sam-
pled cylindrical coordinates and a cross-frame discriminator
applied to the boundary of two adjacent frames.

B.3. Extendable Triplane Implementation

To construct the extendable triplane representation, we
modify the triplane model from EG3D [4] to generate three
planes from independent synthesis networks GXY , GXZ ,
and GY Z , tied to the same latent code and mapping network.
Similar to our layout feature model, we train the terrain
generator on sky-segmented images and disparity maps as
input into the low-resolution discriminator to help the model
learn geometry. The upsampler portion of this model and the
training procedure is the same as EG3D, using λR1 = 10. To
prevent the model from rendering the segmented sky color
(we use white for the sky color, following the background
color of NeRF [12]), we finetune the model penalizing for



white pixels when the sky mask is one:

Lsky = exp(−5 ∗
∑
c

(ILR[c]− 1) ∗mLR. (5)

The finetuning operation is performed for 400K samples with
λsky increasing from zero to 40 during training. At inference
time, we perform SOAT [5] feature stitching to each genera-
tor along the appropriate dimensions to obtain the extended
triplane representation. As the skydome model does not train
on generated images, we use the same skydome model as be-
fore. We use 50 randomly sampled camera poses for training,
which improves the geometry diversity (more mountainous
terrain) the compared to using 1K random training poses.

C. Additional Experiments
C.1. Training without a separate skydome

Modelling faraway content separately is a common strat-
egy in unbounded scene-reconstruction [2, 7]. To ensure that
we cannot intersect the skydome as we arbitrarily extend
the layout features, we use zero inverse-depth for sky pixels,
which can only render a solid color as the weight of all points
along the ray must be zero to obtain zero inverse-depth. In
this experiment, we train ILR using the same training strategy
as our final ILR model, but instead supervise with full RGB
images rather than sky-segmented RGB images. This cor-
responds to training the model without a separate skydome.
We find that without the separate skydome, the model learns
incorrect geometry, as it is forced to place some density at
finite distances in order to render content in the sky to match
the training distribution. Figure 6 shows the difference in
ray accumulations from models trained with the skydome
(prior to opacity regularization) and without the skydome.
The model without the skydome places semi-transparent con-
tent in the sky region, which creates a fog-like effect when
moving the camera throughout the landscape.

C.2. Changing the number of sampled cameras

We train our model using a set of one thousand cameras
with randomly sampled translations within the layout fea-
ture grid, and rotations such that the camera view frustum
overlaps with the feature grid. However, one limitation of
this training strategy is that we find the model can learn re-
peating geometry, such that the rendered disparity map may
look similar when sampling different random latent codes
at the same camera position, despite the pixel color values
being different. We hypothesize that the diversity of camera
poses sampled during training may obscure the repeating
geometry effect from the discriminator, as images sampled
from different camera poses will appear different in terms of
both color and geometry.

To investigate this effect, we train another model using
only five camera poses during training. The disparity maps

per camera pose show more diversity in this setting, how-
ever we find that this setting results in “holes” and incorrect
geometry in the landscape when moving the camera away
from the training poses, illustrated in Figure 7. We use one
thousand training cameras as our default setting, but a more
optimal setting may involve fewer training cameras, while
still ensuring adequate coverage over the feature grid.

D. Discussion
A limiting factor of our method is the reliance on a vol-

ume rendering operation to decode the 2D layout feature
grid into a 3D feature at each sampled point along the ray.
Due to this operation, the rendered output ILR can only be
trained at low resolution (32x32), and does not learn to gen-
erate detailed textures. (In contrast to NeRF-style models
which can use per-ray supervision, we must render a com-
plete image as an input for the discriminator.) We rely on a
refinement module to upsample the result and add additional
textures, but any refinement in image space is prone to losing
3D consistency. Our extended triplane variation reduces the
computational expense of volume rendering by reducing the
capacity of the decoder MLP and increasing the capacity of
the feature representation, thus allowing for neural rendering
at 64x64 resolution (we find that geometry degrades at higher
resolutions) and decreasing reliance on the upsampler. While
we did not find improvements when training on rendered
patches, improved patch sampling techniques could help in
adding more detail to the rendered result [16].

As our model does not have explicit 3D or aerial super-
vision, we find that it may generate unnatural or repeating
geometry. This can appear as thin mountains, sloping water,
or hills of a similar shape but different appearance when
sampling from different random noise codes.



(a) 1K training cameras; training poses (b) 5 training cameras; training poses

(c) 1K training cameras; independent test poses (d) 5 training cameras; independent test poses

Figure 7. Adjusting the set of training cameras. We plot disparity maps corresponding to training with one thousand cameras, and five
cameras. (a) With our default setting of one thousand training cameras with camera origins uniformly sampled over the layout feature grid,
we find that the model can learn repeating geometry, such that the disparity map generated from the same pose but different latent codes
tends to look similar (each row corresponds to the same pose), despite the RGB colors appearing different. (b) With fewer training cameras,
the models learns more diversity in the rendered geometry, where again each row corresponds to the same camera pose. (c & d) However, the
model trained with one thousand cameras generalizes better to an independent set of cameras, whereas the model trained with five cameras
has a greater frequency to put holes in the decoded landscape (evidenced by completely black disparity maps, or disparity maps that have no
nearby content and thus are darker overall) or regions of solid content without sky (evidenced by disparity maps that do not fade to black
near the top of each image). We use one thousand training cameras as our default setting, but a more optimal setting may involve fewer
training cameras, while still ensuring adequate coverage over the feature grid.
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