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Overview. In the supplementary material, we first present
the visualization results for quantitative analysis. Addition-
ally, we provide detailed descriptions of evaluation metrics
defined in the main text. We also provide more information
on the adopted datasets and their class distributions. Fur-
thermore, we describe our proposed pseudo-label pooling
in more detail. Finally, we present more visualization ex-
amples of whole slide images (WSIs) and their predicted
patch types.

1. Visualization with Causality-based Explana-
tions

Figure 1 presents the visualization results of our pro-
posed explanation approach based on Granger causality ver-
sus the existing approach based on association (GNNEx-
plainer).

2. More Description of Evaluation Metrics

We provide more details on the evaluation metrics used
in the experiments.

• Accuracy: the fraction of correct predictions to the to-
tal number of ground truth labels.

• F-1 score: The F-1 score for each class is defined as

F-1 score = 2 · precision · recall
precision + recall

where ‘recall’ is the fraction of correct predictions to
the total number of ground truths in each class and pre-
cision is the fraction of correct predictions to the total
number of predictions in each class. The F-1 score is
then the weighted average for computing the final F-1
score of the classification.

• AUC: the area under the receiver operating curve
(ROC) which is the plot of the true positive rate
(TPR/Recall) against the false positive rate (FPR).

3. More Information of Adopted Datasets
Table 1 presents the detailed information on each of the

datasets used in our experiments.
Table 1. Summary of datasets [5]

Classification Tumor Normal
TCGA–COAD 1325 109
TCGA–BRCA 1365 347
Staging Stage I Stage II Stage III Stage IV
TCGA–COAD 226 518 365 195
TCGA–BRCA 217 780 301 30
Typing Type I Type II
TCGA–ESCA 127 104

4. More Details on Pseudo-label Graph Pooling
Figure 3 presents the detailed mechanism of the pseudo-

label (PL) pooling. After the propagation of each layer, we
obtain the updated node embeddings. Node embeddings are
clustered according to the pre-defined node types instead of
similarities. The node types are defined according to a pre-
trained patch classifier. We adopt the HoverNet [2] classi-
fier since it is able to detect the nuclei feature in a patch.
We pool the node features in each cluster by an aggregation
method (e.g., mean aggregation) and obtain a single em-
bedding vector for each cluster. Other aggregation methods
such as the attention-based approach [3] also works. We
then aggregate the cluster-level embeddings again to obtain
the graph-level representations.

Pooling by predefined node types can ensure the seman-
tic consistency of the feature embeddings. For instance,
node embeddings under the “neoplastic” type share more
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(a) Input WSI (b) GNNExplainer (c) Causal Explainer

Figure 1. The input WSI (left) and the explanation heatmaps generated by GNNExplainer (middle) and our causal-driven explanation
method (right). Ground truth regions are outlined with red boundaries. Lighter yellow indicates a higher importance score.

or less similar features of neoplastic cells. However, con-
ventional graph pooling methods [1, 4] based on similar-
ity clustering cannot address this. Clusters formed by these
methods have less cosine distances, but such distances can-
not represent the semantic similarities between the embed-
dings. Hence, the embedding distributions among graphs
have inconsistent semantic meanings, which leads to inef-
fective information pooling via these methods.

5. More Visualization Examples

Figure 2 presents more examples of WSIs and their pre-
dicted patch types.
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Figure 2. Additional visualization examples for each input WSI (normal and tumor) and its predicted patch types.
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Figure 3. The mechanism of pseudo-label Pooling.
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