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In the supplementary material, we provide details of op-
tical flow estimation (Sec. 3.2),our real-synthetic data (Sec.
3.5), and show additional comparisons with the state-of-the-
art method [2] (Sec. 4). We further provide a supplemen-
tary video to show the motivation of our methodology and
results for both synthetic and real-world scenes.

6. Details of Optical Flow Estimation

The source code of SC-Flow [3] outputs optical flow vec-
tors every 1 ms. However, Fj→i in Eqn. 4 requires flow
vectors estimated from longer time interval. To obtain more
accurate optical flow vectors, we first initialize the flow vec-
tors by accumulating the optical flows from j to i, then we
conduct refinement by secondly feeding the initial flows to
SC-Flow [3].

7. Details of Real-Synthetic Data
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Figure 11. Visualization for noise levels of a short-exposure image
(1 ms), a synthetic middle-exposure image by merging 4 short-
exposure images, and a real-world middle-exposure image.
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Since the dataset provided by Chen et al. [2] only con-
tains low frame rate (LFR) alternating-exposure RGB se-
quence, we cannot synthesize high-speed spike trains from
such an LFR dataset. To collect alternating-exposure im-
ages and spike trains in high-speed conditions, it may be
feasible to synthesize them from HFR videos captured with
a short exposure. Theoretically, a middle-exposure im-
age can be synthesized by merging several short-exposure
images if there is no camera noise. However, as shown
in Fig. 11, we find that the short-exposure image (left) cap-
tured with 1 ms exposure contains strong noise, which can-
not be effectively suppressed by merging a burst of short-
exposure images. In the middle column of Fig. 11, the
synthetic middle-exposure image contains strong noise as
well, whereas the real-world middle-exposure image (right)
captured with 4 ms contains less noise. The reason is that
images captured with short exposures are more severely
contaminated by camera noise, and the camera noise (the
mean is not zero) is also accumulated when we merge short-
exposure images. Since it is infeasible to synthesize longer-
exposed images by merging a sequence of short-exposure
images, we design a method to synthesize blurry longer-
exposed images.

In this work, we collect the real-synthetic dataset from
alternating-exposure RGB sequences captured in slow-
motion conditions. Our pipeline for the synthesis of middle-
exposure images is shown in Fig. 12. Firstly, we set the
alternating exposures to 1 ms, 4 ms, and 12 ms, which
are consistent with our real-world data. Then we capture
RGB sequences in slow-motion conditions with a frame
rate of 80 FPS (the largest frame rate in this exposure set-
ting). To synthesize the ground truths, we treat each 3 ad-
jacent alternating-exposure frames as a group and synthe-
size a well-exposed image (ground truth) using exposure
fusion [5]. Since the total time T of each frame in the
original RGB sequence is 12.5 ms, and we fuse 3 adjacent
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Figure 12. We capture alternating-exposure RGB sequence in
slow-motion conditions, and compress the time with a ratio of 37.5
ms → 1 ms. We synthesize a blurry middle-exposure image by
averaging 4 neighbored middle-exposure images.
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Figure 13. This is the following of Fig. 7 in the main paper. Visual
quality comparison of real-synthetic data between the proposed
method and the state-of-the-art HDR video reconstruction method:
Chen 21 [2].

frames as a ground truth image (1 ms), the compression ra-
tio of time is 37.5 ms → 1 ms. We select the synthetic
data according to the temporal relationship of real-world
data. For example, since the start time of the first three
RGB frames in real-world data are at the first, the 17th, and
the 34th ms, the first three synthetic alternating-exposure
RGB frames are generated from group 1, group 17 to 20,
and group 34 to 45, respectively. A short-exposure image is
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Figure 14. This is the following of Fig. 10 in the main paper.
Please view this figure together with Fig. 10. In this figure, we
compare our results on the balloon bursting with the slow-motion
capability of iPhone 13 and Mi 10. We show 4 adjacent frames
captured by the smartphones.
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Figure 15. Testing in a scene with strong light. And the simulation
of an HDR method that designed for quanta image sensors [1].

obtained by directly selecting the short-exposure image in
group 1. To synthesize a blurry middle-exposure image, we
average four middle-exposure images selected from group
17 to 20. Similarly, a blurry long-exposure image is synthe-
sized by averaging the 12 long-exposure images of group
34 to 45. Finally, we synthesize spike trains by convert-
ing ground truth RGB frames to intensity maps and gener-
ate spike trains with the integrate-and-fire methodology [6].
Thanks to this method, the domain gap between the syn-
thetic alternating-exposure images and real-world ones cap-
tured in high-speed condition is small.

8. Additional qualitative results
In this section, we present additional two sets of visual

comparisons on real-synthetic data. As shown in Fig. 13,
our method recovers well-exposed color frames with less
motion blur. Figure 14 is the following of Fig. 10 in the
main paper, which presents the visual comparison of the
balloon bursting with the slow-motion capability of two
commercial cameras. We can see that the two cameras also
fail to capture continuous motions of the balloon bursting.
In Fig. 15, we present a set of results (3 RGB images and 9
output images) to validate HFR&HDR performance in con-
ditions with strong light source. We can see a basketball is



spinning rapidly at the fingertip beside a hand-held strong
light. Our method successfully captures the texture details
of the basketball without motion blur. Since quanta image
sensors (QIS) [4], e.g., the SPAD camera and Gigajot QIS
series share similar imaging model with the spiking cam-
era, we conduct comparison with QIS. And for the reason
that we do not have a QIS camera on hand, the compari-
son is performed through a simulation with the source code
provided by Abhiram and Chan [1].
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