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1. Proof to Initialization Scheme
Inspired by [1], we propose an initialization scheme

which is illustrated as follows.
Background. A single fully-connected layer in MLPs is
denoted as

fi(y) = v(Wiy + bi), (1)

where Wi ∈ Rdout
i ×din

i , bi ∈ Rdout
i , y ∈ Rdin

i and v
denotes the ReLU activation function. Then, the MLP used
in our networks is formulated as

f([x, y, z]T ; θ) = wT fl ◦ fl−1 ◦ · · · ◦ f1([x, y, z]T ) + b,

(2)

where w ∈ Rdout
l , b ∈ R, [x, y, z] denotes the

input 3D location in Cartesian Coordinate and θ =
(Wl,bl, . . . ,W1,b1,w, b) represents the parameters of
the MLP.
Initialization. For the first layer in the defined MLP,
f1(y) = v(W1y + b1), we set b1 = 0. As for W1, we
represent it as column vectors,

W1 = [a1,a2, . . . ,adin
1
], a ∈ Rdout

1 , (3)

where ai is the ith column vector in the matrix W1.
Then we normalize a2 with a normal distribution N ∽
(0,

√
2/
√
dout1 ) and set an = 0 (n ̸= 2). For other lay-

ers, we set all entries in Wi(1 < i ≤ l) i.d.d. normal
distribution N ∽ (0,

√
2/
√
douti ) and bi = 0. Finally, set

w =
√
π/

√
doutl and b = −c, where c is a hyper-parameter

and is set to 1.5 in our experiments.
Proposition. With this initialization, the defined MLP is ap-
proximated to a signed distance function, f([x, y, z]T , θ) ≈
|y| − c.
Proof. For the first layer of the defined MLP, f1(x) =
v(W1x+ b1), if setting k1 = dout1 , we have

∥f1(x)∥2 =

k1∑
j=1

v2(uj · x) =
1

k1

k1∑
j=1

v2(
√

k1uj · x),

(4)

where uj denotes the jth row of W1 and mj =
√
kuj .

After applying the initialization scheme to parameters of
the defined MLP in Eq. 2 and m = [0,m2, 0, . . . , 0],
m2 is i.d.d. from a normal distribution N ∽ (0,

√
2).

x = [x1, x2, x3, . . . , xdin ] is the input of each layer. Eq.
4 is calculated with the law of large numbers as

1

k1

k1∑
j=1

v2(
√
k1uj · x) (5)

= E(v(mj · x)2) =
∫
Rk1

v2(m · x)µ(m)dm (6)

=

∫
R
v2(m2x2)µ(m2)dm2 (7)

=

∫
R
v2

(
m2

x2

|x2|
|x2|

)
µ(m2)dm2 (8)

= |x2|2
∫
R
v2

(
m2

x2

|x2|

)
1√
2πσ2

e
−m2

2

2σ2 dm2 (9)

= |x2|2
∫
R+

m2
2

1√
2πσ2

e
−m2

2

2σ2 dm2 (10)

=
|x2|2

2

∫
R
m2

2

1√
2πσ2

e
−m2

2

2σ2 dm2 (11)

= |x2|2, (12)

where µ denotes the probability density function. As a re-
sult, The following equation holds between the output and
input x = [x1, x2, x3, . . . , xdin ] of the first layer

∥f1(x)∥2 ≈ |x2|2. (13)

When 1 < i < l, we have fi(x) = v(Wix+ bi). Then
∥fi(x)∥2 converges to∫

Rk
i

v2(m · x)µ(m)dm (14)

= ∥x∥2
∫
Rki

v2
(
m · x

∥x∥

)
µ(m)dm (15)

where m is the row vector of the matrix
√
kiWi and is i.d.d

with a normal distribution N ∽ (0,
√
2). Let m = Rm′,
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where R ∈ Rk×k is an orthogonal matrix and RT x

∥x∥
=

[1, 0, 0, . . . , 0]. Hence, µ(Rm′) = µ(m′). Then, Eq. 14 is
calculated as

∥x∥2
∫
Rki

v2
(
m · x

∥x∥

)
µ(m)dm (16)

= ∥x∥2
∫
Rki

v2
(
m′TRT x

∥x∥

)
µ(m′)dm′ (17)

= ∥x∥2
∫
Rki

v2 (m′
1)µ(m

′)dm′ (18)

= ∥x∥2
∫
R+

m′
1
2 1√

2πσ2
e
−m′

1
2

2σ2 dm′
1 (19)

=
∥x∥2

2

∫
R
m′

1
2 1√

2πσ2
e
−m′

1
2

2σ2 dm′
1 (20)

= ∥x∥2 (21)

Thus, for the input x of each layer, the output is formulated
as

∥fi(x)∥2 ≈ ∥x∥2, 1 < i < l (22)

Further more, for the last layer of the defined MLP,
f(x) = wT v(Wlx + bl) + b. After initializing, we get

f(x) =

√
π

kl

∑kl

j=1 v(mj · x)−c. By the law of large num-

bers,
√
π

kl

∑kl

j=1 v(mj · x) converges to

√
π∥x∥

∫
Rk

v

(
m · x

∥x∥

)
µ(m)dm (23)

=
√
π∥x∥

∫
Rk

v

(
m′TRT x

∥x∥

)
µ(m′)dm′ (24)

=
√
π∥x∥

∫
Rk

v (m′
1)µ(m

′)dm′ (25)

=
√
π∥x∥

∫
Rk

v (m′
1)

1√
2πσ2

e
−m′

1
2

2σ2 dm′
1 (26)

=
√
π∥x∥

∫
R+

m′
1

1√
2πσ2

e
−m′

1
2

2σ2 dm′
1 (27)

=

√
π∥x∥
2

∫
R+

m′
1

√
2√

πσ2
e
−m′

1
2

2σ2 dm′
1 (28)

= ∥x∥ (29)

where m = Rm′ and R ∈ Rk×k is an orthogonal matrix

which RT x

∥x∥
= [1, 0, 0, . . . , 0].

∫
R+ m′

1

√
2√

πσ2
e
−m′

1
2

2σ2 dm′
1

denotes the mean of the half-normal distribution and is cal-
culated as

2√
π

when σ =
√
2. As a result, for the input x

of the last layer,

f(x) = wT v(Wx+ b) + b ≈ ∥x∥ − c (30)

From Eq. 13, Eq. 22 and Eq. 30, the MLP defined by
Eq. 2 is initialized to denote the Signed Distance Function:
f([x, y, z]; θ) ≈ |y| − c, which represents two planes at
the distance c from the origin of the coordinate and thus
approximates to the floors and ceilings in indoor scenes.

2. Evaluation Metrics
We evaluate our method with the same error metrics used

in prior depth estimation works [5, 7]. The mathematical
expressions of the evaluation metrics are presented in the
following:

Mean Absolute Error: MAE =
1

n

n∑
p

|yp − ŷp|
ŷp

Mean Square Error: MSE =
1

n

n∑
p

(yp − ŷp)
2

Mean Relative Error: MRE =
1

n

n∑
p

|yp − ŷp|

Threshold: δ1 = % of yp s.t.max

(
yp
ŷp

,
ŷp
yp

)
= δ < 1.25

where n denotes the number of valid pixels of a panorama
image, ŷp denotes the depth value in ground truth and yp is
the depth value predicted from networks. Since many works
on depth estimations adopt RMSE as a important metric for
evaluation, we also present the quantitative results in stan-
dard RMSE for reference.

Dataset Method MRE ↓ RMSE ↓ δ1 ↑

IPMP

NeRF 0.1890 0.6820 0.6712
NeuS 1.0786 3.3349 0.4386

VolSDF 0.5821 1.7501 0.0970
Ours 0.0641 0.3024 0.8975

M3D

NeRF 0.1006 0.6892 0.8551
NeuS 0.8232 3.9928 0.5163

VolSDF 0.3018 1.3385 0.5298
Ours 0.0258 0.2164 0.9902

S2D3D

NeRF 0.1209 0.6396 0.7960
NeuS 0.4846 2.0591 0.6290

VolSDF 0.5114 1.5369 0.2442
Ours 0.0352 0.2637 0.9790

Table 1. Quantitative results evaluated with RMSE metric on
IPMP, Matterport3D and Stanford2D3D datasets.

3. Qualitative Results
In this section, we show more qualitative comparisons in

Figure 1.
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Figure 1. Qualitative results of our method, NeRF [4] and ADfSM [3]. Compared with current advanced approaches, our methods show
accurate layout of the reconstructed scenes. All depth maps are visualized in the range of 0 to 10 meters. Point clouds in aerial views are
transformed from the estimated depth maps and RGB images for better visualization.
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4. The hyper-parameter c in the initialization
In this section, we discuss the hyper-parameter c, which

is used in our proposed initialization approach to configure
the distance between the approximated floors and ceilings.
As Table 2 shows, the selection of c will affect the perfor-
mance of the proposed initialization scheme to some extent.
In our experiments, we set c to 1.5.

c MAE ↓ MRE ↓ MSE ↓ δ1 ↑

0 0.1252 0.0417 0.0997 0.9694
0.5 0.0967 0.0387 0.0787 0.9684
1.5 0.0731 0.0258 0.0532 0.9902
2.5 0.0738 0.0257 0.0574 0.9854
3.5 0.0793 0.0297 0.0606 0.9803

Table 2. An ablation study of c for quantitative evaluations. All re-
sults are trained with 3 views and metrics are averaged over the 10
scenes from Matterport3D. Setting c to 1.5 achieves better results.

5. Parameters
In this section, we discuss about the number of param-

eters in different methods. As Table 3 shows, our method,
which outperforms other methods by a large margin, has
similar parameter number with other methods.

Method Parameters Method Parameters

NeRF 1.192M VolSDF 0.803M
NeuS 1.407M Ours 1.220M

Table 3. Comparisons of the number of parameters among differ-
ent models.

6. Cylinder Initialization
Cylinder Init.

Figure 2. Illustration of the Cylinder Initialization.

Based on the Manhattan World Assumption, we also de-
velope an initialization method to approximate the walls of
indoor scenes, which are parallel to the direction of gravity
and perform like a Cylinder in the space as shown in Figure
2. Quantitative comparisons are shown in Table 4. The pro-
posed initialization that approximates the floors and ceilings
achieves the best performance.

Init. MRE ↓ MSE ↓ δ1 ↑
Sphere 0.0430 0.1032 0.9717

Cylinder 0.0556 0.1028 0.9590
Floors&Ceilings 0.0258 0.0532 0.9902

Table 4. Comparisons among different initialization methods. All
results are trained with 3 views and metrics are averaged over the
10 scenes from Matterport3D.

7. Robustness of the Initialization Method
We evaluate the robustness of our proposed initialization

scheme on several circumstances where the assumption that
floors and ceilings are vertical to the gravity direction does
not strictly hold. As shown in Figure 3, the vertical direction
of the scene is deviated from the gravity direction by 1◦, 3◦,
5◦, 7◦ and 10◦. It is obvious that slight deviations do not
cause dramatic performance degradation.

Figure 3. Illustration of the misalignment that the direction of
gravity offset from the vertical direction to the ground by a few
degrees. The Green Arrow denotes the direction of gravity.

Degree MAE↓ MRE ↓ MSE ↓ δ1 ↑

0◦ 0.0731 0.0258 0.0532 0.9902
1◦ 0.0785 0.0269 0.0610 0.9892
3◦ 0.0840 0.0310 0.0616 0.9826
5◦ 0.0843 0.0294 0.0629 0.9886
7◦ 0.0815 0.0279 0.0655 0.9906
10◦ 0.0849 0.0301 0.0684 0.9892

Table 5. Experimental results on scenes that are not strictly fol-
lowing the Manhattan World Assumption. Metrics are averaged
over 10 artificially disturbed scenes from Matterport3D and each
scene is trained with 3 views.

8. Comparisons with Supervised Methods
We evaluated the performance of the supervised monoc-

ular method. SliceNet is pre-trained on 3D60 [6], OmniFu-
sion is pre-trained on Stanford2D3D. Ours is trained with
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3 views. All methods are evaluated on our proposed IPMP
dataset. As shown in the Table 6, the supervised methods
suffer from domain adaptation issues and significant perfor-
mance degradation in practical applications.

Method Time MAE ↓ MRE ↓ MSE ↓ δ1 ↑
OmniFusion CVPR 2022 0.6667 0.3101 0.7925 0.2993

SliceNet CVPR 2021 0.4974 0.2100 0.7462 0.5776
Ours 0.1266 0.0641 0.0955 0.8975

Table 6. Comparisons with supervised methods. Metrics are aver-
aged over 5 scenes.

9. Evaluations on the scene captured by a Com-
mercial Panoramic Camera

We apply our method to a real-world dataset, the Coffee
Area dataset, which is captured by a Ricoh-Theta-S spher-
ical camera and first released in SOMSI [2]. Figure 4 vi-
sualizes the depth estimation and point cloud reconstruc-
tion results of three different methods for a single scene.
Our method outperforms the supervised methods, which en-
counter domain adaptation issues in real-captured scenar-
ios. We demonstrate the effectiveness and robustness of our
method in terms of accuracy and completeness.

Figure 4. Qualitative results of different methods on the Coffee
Area dataset.

10. Discussion of the processed dataset
The Matterport3D and Stanford2D3D datasets re-

rendered by [6] suffer the depth leaking issue that the
brighter regions have smaller depth values (the left image
of Fig. 5). As a result, the network may directly learn the
depth information from the variety of the brightness, es-
pecially for a supervised method. To verify that the pro-
posed method does not benefit from the leaked depth in-
formation, we brightened up the dark regions of panoramas
from the processed Matterport3D dataset (the right image of
Fig. 5). Table 7 shows the quantitative results of the origi-
nal dataset and the brightness-adjusted dataset. Our method
still generates satisfying results with the adjusted scenes,
which demonstrate the proposed method has good robust-
ness to brightness changes. The brightness adjusted dataset
is released with the code.

Input MAE ↓ MRE ↓ MSE ↓ δ1 ↑
Original 0.0731 0.0258 0.0532 0.9902

Brightness Adjust 0.0776 0.0261 0.0474 0.9916

Table 7. Evaluations on the original dataset and Brightness-
adjusted dataset. Metrics are averaged over 10 scenes.

Figure 5. Illustration of the depth leaking issue and the brightness-
adjusted dataset.
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