
Making Vision Transformers Efficient from A Token Sparsification View
Supplementary Materials

Shuning Chang1* Pichao Wang2†‡ Ming Lin2‡ Fan Wang2 David Junhao Zhang1

Rong Jin2 Mike Zheng Shou1†

1Show Lab, National University of Singapore 2Alibaba Group

A.1. Detailed Architectures

The detailed architectures of our STViT-DeiT and
STViT-Swin are shown in Table 1 and Table 2, where an
input image size 224× 224 is assumed for all the networks
and the default numbers of semantic tokens are 16 and 36
separately. “Tr(ST)” denotes the transformers processing
semantic tokens.

A.2. Computational complexity analysis

Global vision transformer (DeiT). We define that the
number of image tokens is N, the number of semantic to-
kens is M, and their dimension is C. The patch embed-
ding layer is neglected. The computational complexity of
a global transformer processing image tokens (IT) is:

Ω(MHA(IT)) = 4NC2 + 2N2C,

Ω(FFN(IT)) = 8NC2.
(1)

The computational complexity of a global transformer pro-
cessing semantic tokens (ST) is:

Ω(MHA(ST)) = 4MC2 + 2M2C,

Ω(FFN(ST)) = 8MC2.
(2)

The relationships between computational complexity and
token number in attention and FFN are quadratic and linear,
respectively. Due to the N ≪ M , our method significantly
reduces the cost of transformers, especially the attention.
The computational complexity of STGM is:

Ω(STGM) = 2MC2 + 2NC2 + 2MNC. (3)

In global vision transformers, our STGM is also an efficient
module. The computational complexity of whole DeiT and

our STViT-DeiT are:

Ω(DeiT) = 144NC2 + 24N2C,

Ω(STV iT) = 52NC2 + 12M2C + 76MC2

+8N2C + 4MNC.

(4)

Local vision transformer (Swin). We define that the
number of image tokens (IT) is N, the number of image
tokens in each window is W, the number of semantic to-
kens (ST) in each window is M, and their dimension is
C. We only compute the computational complexity in each
transformer. The computational complexity of a local trans-
former processing image tokens (IT) is:

Ω(MHA(IT)) = 4NC2 + 2W 2NC,

Ω(FFN(IT)) = 8NC2.
(5)

The computational complexity of a local transformer pro-
cessing image tokens (ST) is:

Ω(MHA(ST)) = 4(N/W)MC2 + 2M2(N/W)C,

Ω(FFN(ST)) = 8MC2.
(6)

Swin makes the computational complexity linear to token
number, while our method further reduces the computa-
tional complexity. The computational complexity of STGM
is:

Ω(STGM) = 2(N/W)MC2 + 2NC2 + 2(N/W)M2C.
(7)

A.3. The results on LV-ViT
Setting. In LV-ViT [18], by default, the STGM employs
the 6th and 7th transformer layers of LV-ViT-S (with 16
layers in total). We downsample the token labels to match
the size of our semantic tokens.

*Work done during an internship at Alibaba Group.
†Equal corresponding authors.
‡Work done at Alibaba Group, and now affiliated with Amazon.

1

Output size STViT-DeiT-T STViT-DeiT-S STViT-DeiT-B

Base 14×14
Patch Embedding Patch Embedding Patch Embedding[

dim 192, head 3
]
×4

[
dim 384, head 6

]
×4

[
dim 768, head 12

]
×4

STGM 4×4
[
dim 192, head 3

]
×2

[
dim 384, head 6

]
×2

[
dim 768, head 12

]
×2

Tr(ST) 4×4
[
dim 192, head 3

]
×6

[
dim 384, head 6

]
×6

[
dim 768, head 12

]
×6

Table 1. Detailed architecture of STViT-DeiT.

Output size STViT-Swin-T STViT-Swin-S STViT-Swin-B

Base

Stage 1 56×56
Patch Embedding Patch Embedding Patch Embedding[
win. sz. 7× 7,
dim 96, head 3

]
×2

[
win. sz. 7× 7,
dim 96, head 3

]
×2

[
win. sz. 7× 7,
dim 192, head 6

]
×2

Stage 2 28×28
Patch Merging Patch Merging Patch Merging[

win. sz. 7× 7,
dim 192, head 6

]
×2

[
win. sz. 7× 7,
dim 192, head 6

]
×2

[
win. sz. 7× 7,
dim 256, head 8

]
×2

Stage 3 14×14
Patch Merging Patch Merging Patch Merging[

win. sz. 7× 7,
dim 384, head 12

]
×2

[
win. sz. 7× 7,

dim 384, head 12

]
×10

[
win. sz. 7× 7,

dim 512, head 16

]
×10

STGM Stage 3 6×6

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 512, head 16

]
×2

Tr(ST)
Stage 3 6×6

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 384, head 12

]
×6

[
win. sz. 3× 3,

dim 512, head 16

]
×6

Stage 4 6×6
Linear Layer Linear Layer Linear Layer[

win. sz. 3× 3,
dim 768, head 24

]
×2

[
win. sz. 3× 3,

dim 768, head 24

]
×2

[
win. sz. 3× 3,

dim 1025, head 32

]
×2

Table 2. Detailed architecture of STViT-Swin.

Model Metrics Base
No. of semantic tokens

36 49 100

STViT-LV-ViT-S
Top-1 Acc(%) 83.3 82.7(-0.6) 82.8(-0.5) 83.1(-0.2%)

FLOPs(G) 6.6 3.69(-44%) 3.91(-41%) 4.62(-30%)
Throughput(img/s) 1159 2073(+78%) 1933(+72%) 1592(+37%)

Table 3. Results of STViT on LV-ViT-S.

Results. The main results are shown in Table 3. Token
labelling in LV-ViT is not friendly for our method. Token
labelling emphasizes the importance of all the output tokens
and advocates that each output token should be associated
with an individual location-specific label [18], while our se-
mantic tokens generated by clustering emphasize high-level
semantic information. However, we still achieve good per-
formance. In Table 4, we compare our STViT with the
state-of-the-art token sparsification method EViT [22] on
LV-ViT-S. Results indicate that our method outperforms it.

A.4. Applications in semantic segmentation
Settings. ADE20K is a widely-used semantic segmen-
tation dataset, including a broad range of 150 semantic
classes. It has 25K images in total, with 20K for training,
2K for validation, and 3K for testing. UperNet in mmseg is
utilized as our base framework. The ws is set to 3. Models
are trained for 240K iterations. All the other settings follow
the Swin Transformer [24].

Comparison to Swin Transformers. Table 5 presents the
results of STViT-R-Swin on semantic segmentation. With
similar FLOPs reduction, the drop on mIoU is larger com-

pared with those in object detection tasks, which shows that
our method still has a gap on dense prediction compared to
the full-token network.

We analyze the relatively poor performance from two
views. First, the STGM strictly prunes more than 80% to-
kens by attention, which remains the high-level semantic
information but loses nearly all the detailed information.
Semantic segmentation is a dense pixel-level classification
task, and the semantic tokens are difficult to enhance the
pixel-level representation. Second, our spatial pooling layer
with large kernel size in STGM and self-attention layers can
be regarded as low-frequency filters. STGM filters most
high-frequency information, which is necessary for seman-
tic segmentation.

A.5. Additional visualization

We visualize the attention map of the second attention
layer in STGM in Figure 1a. The shape of attention map
is Ns × (Ns + Ni), where Ns = 16, and Ni = 196. The
results of the attention computation between semantic to-
kens S1 (queries) and semantic tokens S1 (keys) are shown
in the most left 16 columns, and the rest columns show the
computation between semantic tokens S1 and image tokens
X . The figure shows that the second semantic token high-
lights the region of semantic tokens, while other semantic
tokens highlight the image tokens. Figure 1c visualizes the
attention maps in the self-attention layers after STGM. The
second semantic token is incorporated by the majority of se-
mantic tokens. These phenomenons illustrate that the sec-
ond semantic token focuses on more global semantic infor-
mation, which further verifies our global cluster center ini-
tialization can guide the semantic tokens to extract global
semantic information. The phenomenons in Figure 1a and
Figure 1c nearly emerge in all the images.

Neglecting the most left 16 columns of Figure 1a, we re-
shape it into 16 14 × 14 attention maps like Figure 3 and
show them in Figure 1b. Thanks to the clustering of second
attention and global initialization G, we can see that the se-
mantic information is more accurate and meaningful.

We visualize the attention maps of semantic tokens with
single global initialization in Figure 1d. Without spatial ini-
tialization, the response regions are more global and similar.
In contrast, our semantics of each semantic token are asso-
ciated with the specific spatial location, which is the basis
to allow our method to be applied in local self-attention and
downstream tasks. Additionally, our attention maps contain
more recognized and diverse semantic information, reflect-
ing the effectiveness of our spatial initialization.

Method Top-1 Acc FLOPs(G)

EViT [22] 82.5(-0.8) 3.9(-41%)
EViT [22] 83.0(-0.3) 4.7(-29%)

STViT(Ours) 82.7(-0.6) 3.7(-44%)
STViT(Ours) 83.1(-0.2) 4.6(-30%)

Table 4. Comparisons with the state-of-the-art token sparsification
method EViT on LV-ViT-S.

A.6. Additional ablation study
All the following experiments of STViT and STViT-R

are conducted on DeiT-S and Swin-S unless otherwise spec-
ified, respectively.

The position of STGM. The effects of different position
of STGM are shown in Table 6. Two transformer layers
are employed in STGM in all the experiments. We can see
that the performance achieves improvement with appropri-
ately moving the STGM towards deep layers due to better
features of image tokens.

Positional encoding. We try to apply positional encod-
ing to our semantic tokens. Table 7 shows comparisons
of different positional encoding methods, including learned
positional encoding, conditional positional encoding, and
relative positional encoding [24]. All the positional en-
coding methods do not work on DeiT-S and Swin-T, even
though relative positional encoding improves Swin-T by
1.2%. These experiments demonstrate that the interaction
between our semantic tokens depends on high-level seman-
tic information and nearly does not use position relation-
ships.

Method Backbone mIoU FLOPs(G)

UperNet Swin-S 49.3 49
UperNet STViT-R-Swin-S 48.3 34(-31%)

UperNet Swin-B 49.7 87
UperNet STViT-R-Swin-B 48.9 60(-31%)

Table 5. Results of semantic segmentation on the
ADE20K val set. A multi-scale inference with resolution
[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× is applied. FLOPs and latency
are measured in backbones with resolution 512× 512.

Pos. 3-5 4-6 5-7 7-9 8-10 10-12

Top-1 Acc(%) 79.3 79.8 79.8 80.3 80.3 79.8
FLOPs(G) 1.56 1.91 2.25 2.95 3.30 4.00

Table 6. Performance evaluation on the different positions of our
STGM.

(a) The attention map (16× 216) of the second attention layer in STGM.

(b) The attention maps (14× 14) of 16 semantic tokens in the second attention layer of STGM.

(c) Some examples of attention maps (16× 16) of the self-attention layers after STGM.

(d) The attention maps (14× 14) of 16 semantic tokens generated by single global initialization.

Figure 1. Additional visualization of attention maps.

STViT-DeiT-S Acc STViT-Swin-T Acc

Learned 79.6 81.5
Conditional 79.7 81.4

Relative 79.8 81.3
No pos. 79.8 81.5

Table 7. Performance evaluation on different positional encod-
ing methods. Learned, Conditional, and Relative indicate learned
positional encoding, conditional positional encoding, and relative
positional encoding, respectively.

Alternative schemes of spatial pooling. We use an in-
tra and inter-window spatial pooling in STGM to gener-
ate initial cluster centers, which adaptively save meaning-
ful semantic information and avoids overlap between adja-
cent windows as much as possible. Furthermore, we explore

more spatial pooling schemes, including: (i) spatial pooling
with large-size kernel and overlap, (ii) multi-scale spatial
pooling, and (iii) adaptive spatial pooling. We adopt 25 se-
mantic tokens in these experiments. In (i), the kernel size
and overlap are set to 6 and 4, respectively. In (ii), we use
two adaptive pooling layers which produce 9 and 16 tokens
separately. The results are presented in Table 8 on DeiT-T.
We can see that overlap and multiple scales cannot boost the
performance, which also demonstrates that discrete seman-
tic tokens with high-level semantic information benefit our
method.

Scheme i Scheme ii Adaptive spatial pooling Ours

Top-1 Acc(%) 71.6 71.7 71.9 72.2

Table 8. Alternative schemes of spatial pooling.

A.7. Cluster center recovery by self attention
We present an analysis showing how cluster centers are recovered through the attention mechanism. Let K be the number

of clusters. Let N (µi, σ
2I/d), i = 1, . . . ,K be the K Gaussian distributions, with center µi ∈ Rd and covariance matrix

σ2I/d. Let xi,j ∈ Rd, j = 1, . . . , n, be the n data points independently sampled from N (µi, σ
2I/d). Given data points D =

{xi,j , i ∈ [K], j ∈ [n]}, of course without knowing the association of each data point to its underlying Gaussian distribution,
our goal is to recover the underlying cluster centers µi, i ∈ [K]. We assume that all the center vectors of Gaussian distributions
are well separated, i.e. ⟨µj , µk⟩ ≤ γ if j ̸= k. For the convenience of study, we assume |µi| = 1, i ∈ [K].

Let µ̂i ∈ Rd, i ∈ [K] the initialized cluster centers, with all the cluster centers being well normalized. Define ∆ as the
gap for any initialized µ̂i to the target cluster centers µi than to other clusters µj , i.e.

∆ = min
i∈[K]

min
j ̸=i

⟨µ̂i, µi − µj⟩

The new cluster centers are estimated through the self-attention mechanism, i.e.

µ̂′
k =

1

Zk

K∑
i=1

n∑
j=1

exp (λ⟨µ̂k, xi,j⟩)xi,j

where λ > 0 is a scaling factor and Zi is defined as

Zk =

K∑
i=1

n∑
j=1

exp (λ⟨µ̂k, xi,j⟩)

Theorem 1. With sufficiently large d and n ≫ d, with a probability 1−O(K/n2), we have

⟨µk, µ̂
′
k⟩

|µ̂′
k|

≥ 1−O

(
logK + log d

d∆

)
Proof. Define ui,j = xi,j − µi. We have

µ̂′
k =

1

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩)


 n∑

j=1

exp (λ⟨µ̂k, ui,j⟩)

µi +

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j


We first bound

∑n
j=1 exp (λ⟨µ̂k, ui,j⟩). Since ui,j ∼ N (0, σ2I/d) and |µ̂k| = 1, we know that ⟨µ̂k, ui,j⟩ ∼ N (0, σ2/d).

Hence, with a probability 1− 2δ, we have∣∣∣∣∣∣
n∑

j=1

exp (λ⟨µ̂k, ui,j⟩)− nEx∼N (0,σ2/d) [exp(λx)]

∣∣∣∣∣∣ ≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
+ 2

√
nEx∼N (0,σ2/d) [exp(2λx)] log

2

δ

Since

Ex∼N (0,σ2/d) [exp(λx)] =

√
d

2πσ

∫ +∞

−∞
exp

(
λx− x2d

2σ2

)
dx = exp

(
λ2σ2

2d

)
we have, with a probability 1− 2δ,∣∣∣∣∣∣

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)− n exp

(
λ2σ2

2d

)∣∣∣∣∣∣ ≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
+ 2

√
n exp

(
2λ2σ2

d

)
log

2

δ

With large enough n, we have

3 exp

(
λσ

√
2

d
log

n

δ

)
+ 2

√
n exp

(
2λ2σ2

d

)
log

2

δ
≤ C

√
n exp

(
λ2σ2

2d

)

and therefore

(1− τ)n exp

(
λ2σ2

2d

)
≤

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ≤ (1 + τ)n exp

(
λ2σ2

2d

)
where

τ ≤ C√
n

Here C > 0 is a universal constant.
We second bound

∑n
j=1 exp (λ⟨µ̂k, ui,j⟩)ui,j . We write each ui,j = u⊥

i,j + u
∥
i,j , where u

∥
i,j = ⟨ui,j , µ̂k⟩µ̂k and u⊥

i,j is a
d− 1 dimensional Gaussian vector. We have

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j =

 n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩

 µ̂k +

n∑
j=1

u⊥
i,j

Since u⊥
i,j ∼ N

(
0, σ2Id−1/d

)
, we have

∑n
j=1 u

⊥
i,j ∼ N

(
0, nσ2Id−1/d

)
. Using the concentration of χ2

d−1 distribution, we
have, with a probability 1− δ∣∣∣∣∣∣

n∑
j=1

u⊥
i,j

∣∣∣∣∣∣
2

≤ nσ2

d

(
d− 1 + 2

√
(d− 1) log

1

δ
+ 2 log

1

δ

)
≤ nσ2

(
1 + 3

√
log(1/δ)

d

)

To bound
∑n

j=1 exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩, following the same procedure, we have, with a probability 1− 2δ∣∣∣∣∣∣
n∑

j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ − nEx∼N (0,σ2/d) [exp(λx)x]

∣∣∣∣∣∣
≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
σ

√
2

d
log

n

δ
+

√
nEx∼N (0,σ2/d) [exp(2λx)x2]

2

δ

Since

Ex∼N (0,σ2/d) [exp(λx)x] =

√
d

2πσ2

∫
exp

(
λx− x2d

2σ2

)
xdx =

λσ2

d
exp

(
λ2σ2

2d

)
and

Ex∼N (0,σ2/d)

[
exp(2λx)x2

]
=

√
d

2πσ2

∫
exp

(
2λx− x2d

2σ2

)
x2dx

=

√
d

2πσ2
exp

(
2λ2σ2

d

)∫
exp

(
d

2σ2

[
x− λσ2

d

]2)([
x− λσ2

d

]2
+ 2

λσ2

d

[
x− λσ2

d

]
+

λ2σ4

d2

)
dx

= exp

(
2λ2σ2

d

)(
λ2σ4

d2
+

(
2σ2

d

)3/2

Ex∼N (0,1)

[
x2
])

= exp

(
2λ2σ2

d

)(
λ2σ4

d2
+ 2

(
2σ2

d

)3/2
)

≤ 2λ2σ4

d2
exp

(
2λ2σ2

d

)
We thus have, with a probability 1− 2δ,∣∣∣∣∣∣

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ −
nλσ2

d
exp

(
λ2σ2

2d

)∣∣∣∣∣∣
≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
σ

√
2

d
log

n

δ
+

√
4nλ2σ4

d2
exp

(
2λ2σ2

d

)
log

2

δ

When n is sufficiently large, we have, with a probability 1− 2δ

(1− τ)
nλσ2

d
exp

(
λ2σ2

2d

)
≤

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ ≤ (1 + τ)
nλσ2

d
exp

(
λ2σ2

2d

)
where τ ≤ C/

√
n. By putting them together, with a probability 1− 4δ, we have

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j = n(1 + β)
nλσ2

d
exp

(
λ2σ2

2d

)
µ̂k + nνi

with β ∈ [1− τ, 1 + τ] and

|νi| ≤
2σ√
n

Finally, we have, with a probability 1− 4Kδ

µ′
k =

n

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩)
(
(1 + αi) exp

(
λ2σ2

2d2

)
µi + (1 + βi)

λσ2

d
exp

(
λ2σ2

2d

)
µ̂k + ν

)
Using the same analysis, we have, with a probability 1− 4Kδ,

Zk

n
= exp

(
λ2σ2

2d2

) K∑
i=1

exp (λ⟨µi, µ̂k⟩) (1 + αi)

Now, we can bound |µ̂′
k − µk|. We have

|µk − µ̂′
k|

≤
∣∣∣∣ nZk

exp

(
λ⟨µk, µ̂k⟩+

λ2σ2

2d2

)
(1 + αk)− 1

∣∣∣∣+ n

Zk

∑
i̸=k

exp

(
λ⟨µi, µ̂k⟩+

λ2σ2

2d2

)
(1 + αi)

+
nλσ2|µk − µ̂k|

Zkd

K∑
i=1

exp

(
λ⟨µi, µ̂k⟩+

λ2σ2

2d2

)
(1 + βi) +

n

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩) νi

To further develop the bound for |µk − µ̂′
k|, we have

Zk ≥ n exp

(
λ2σ2

2d2
+ λ⟨µk, µ̂k⟩

)(
1− C√

n

)
and

Zk ≤ n exp

(
λ2σ2

2d2
+ λ⟨µk, µ̂k⟩

)(
1 +

C√
n

)
(1 + (K − 1) exp (−λ∆))

We thus have

|µk − µ̂′
k|

≤

∣∣∣∣∣ exp (λ∆)

exp (λ∆) +K − 1

(
1− 2C√

n

)2

− 1

∣∣∣∣∣+
(
1 +

2C√
n

)2
K − 1

exp(λ∆)

(
1 +

λσ2

d
|µk − µ̂k|

)
+
λσ2

d
|µk − µ̂k|+

(
1 +

2C√
n

)
σ√
n

By choosing λ = (log d+ logK)/∆, and by assuming n is significantly larger than d, we have

|µk − µ̂′
k| ≤ O

(
log d+ logK

d∆

)
implying that

⟨µk, µ̂
′
k⟩

|µ̂′
k|

≥ 1−O

(
log d+ logK

d∆

)

	. Detailed Architectures
	. Computational complexity analysis
	. The results on LV-ViT
	. Applications in semantic segmentation
	. Additional visualization
	. Additional ablation study
	. Cluster center recovery by self attention

