
Pointersect: Neural Rendering with Cloud-Ray Intersection
Supplementary Material

Jen-Hao Rick Chang1, Wei-Yu Chen1,2*, Anurag Ranjan1, Kwang Moo Yi1,3∗, Oncel Tuzel1
1Apple, 2Carnegie Mellon University, 3University of British Columbia

https://machinelearning.apple.com/research/pointersect

In the supplementary material, we provide details about
the following topics:
• overview of related work in Appendix A;
• accelerated structure in Appendix B;
• model architecture in Appendix C;
• complexity and runtime analyses in Appendix D;
• training procedure in Appendix E;
• inverse rendering in Appendix F;
• Chamfer distance in Appendix G;
• additional results to evaluate and gain insights on pointer-

sect, including:
– novel-view rendering video and additional scenes in

Figure 13 and in the offline web page,
– ablation study on the number of input views and the

choice of k in Appendix H.1,
– ablation study on the input resolution in Appendix H.2,
– and the effect of ground-truth vertex normal to Poisson

reconstruction in Appendix H.3;

• Effect of noise in depth map in Appendix I;
• and finally, the entire training dataset containing 48

meshes and their credits in Appendix J.

A. Additional related work
In this paper, we focus on comparing with point-cloud

rendering methods that do not require per-scene optimization.
In this section, we briefly discuss and include additional
related work. We also provide an overview in Tab. 4 for
interested readers.

Many recent works develop novel view synthesis tech-
niques given only the RGB images and optionally their cam-
era information. Neural Radiance Field (NeRF) [22] achieve
a great success by representing the volume density and the
radiance field with a neural network, and it is able to render
high-quality photo-realistic images from novel viewpoints.
Many follow-up works further improve the quality [3, 42],

*Work done at Apple. Corresponding author: jenhao chang@apple.com

the training efficiency [33, 46], the rendering speed [11, 23],
and the generalization capability [43, 47]. Additional ca-
pabilities have also been introduced into NeRF, including
estimating shape and reflectance [5, 39, 48]. Several meth-
ods also aim to reduce or completely avoid the per-scene
optimization of NeRF by utlizing image features [6, 43, 47].
These methods often rely on additional information, includ-
ing class labels,

Other rendering primitives, including spheres [17], occu-
pancy field [25], Signed Distance Function (SDF) [15, 45],
light field [38, 40], or a plane sweep volume [6, 7, 21] have
also been developed.

Hybrid methods have also been developed. These meth-
ods first utilize Structure from Motion (SfM) or multi-view
geometry to estimate scene geometry form the input RGB
images. The estimated geometry is then used to provide
additional supervision for NeRF [9, 36] or to anchor feature
aggregation [34, 35].

As mentioned earlier, this paper focuses on point-cloud
rendering without per-scene optimization. The methods dis-
cussed above operate in a different setting or require per-
scene training. Therefore, while we are inspired by many of
these methods, our method is not directly comparable.

B. Finding points along a ray
Finding the intersection point of a ray r = (ro, r⃗d) with

a point cloud P requires only points near the ray. Thus, we
pass only the k nearest points within a cylinder of radius
δ in terms of their perpendicular distances to the ray. A
naive implementation would examine all points in P , sort
them according to their distances, and keep the k nearest
ones, taking O(n log n) operations per ray, where n is the
total number of points in P . Since we only need points
with the cylinder, a commonly used strategy to reduce the
time complexity is to build an accelerated structure like
octree to reduce the number of candidate points to examine
[29]. Building an octree takes O(n log n) operations, and
searching for nearby points takes O(log n) operations per
ray. For a static scene, the octree can be built once and keep

1

https://machinelearning.apple.com/research/pointersect
jenhao_chang@apple.com


Table 4. Rendering methods for 2D images and point clouds. The table provides a summary of the scene presentation (geometry primitives)
and the capabilities of various methods. ✓∗: require vertex normal as inputs. ✓♭: provides good results, and per-scene optimization further
improves the quality. ✓: depth and normal can be estimated from the density function.

Category Method Primitives
Render
color

Estimate
depth

Estimate
normal

No per-scene
optimization

Rendering from 2D images

NeRF [22] volume density (MLP) ✓ ✓ ✓ ✗
NeRD [5] volume density (MLP) ✓ ✓ ✓ ✗
NeRV [39] volume density (MLP) ✓ ✓ ✓ ✗
NeRFactor [48] volume density (MLP) ✓ ✓ ✓ ✗
KiloNeRF [33] volume density (grid MLP) ✓ ✓ ✓ ✗
InstantNGP [23] volume density (multi-resolution MLP) ✓ ✓ ✓ ✗
Plenoctrees [46] volume density (octree) ✓ ✓ ✓ ✗
Plenoxels [11] volume density (voxel) ✓ ✓ ✓ ✗
PixelNeRF [47] volume density (MLP + 2D features) ✓ ✓ ✓ ✓

IBRNet [43] volume density (MLP + 2D features) ✓ ✓ ✓ ✓♭

Pulsar [17] spheres ✓ ✓ ✓ ✗
Differentiable Volumetric Rendering [25] occupancy field ✓ ✓ ✓ ✗
IDR [45] SDF ✓ ✓ ✓ ✗
Neural Lumigraph Rendering [15] SDF ✓ ✓ ✓ ✗
Light field Networks [38] light field ✓ ✗ ✗ ✗
Light Field Neural Rendering [40] light field ✓ ✗ ✗ ✗
Extreme View Synthesis [7] plane sweep volume ✓ ✓ ✗ ✓

MVSNeRF [6] plane sweep volume ✓ ✓ ✓ ✓♭

Local Light Field Fusion [21] plane sweep volume + light field ✓ ✓ ✗ ✓

Rendering from 2D images + SfM Depth

Depth-supervised NeRF [9] volume density (MLP) ✓ ✓ ✓ ✗
Dense Depth Priors [36] volume density (MLP) ✓ ✓ ✓ ✗
Free View Synthesis [34] mesh ✓ ✓ ✓ ✓
Stable View Synthesis [35] mesh ✓ ✓ ✓ ✓

Point cloud to
other representations

Poisson reconstruction [14] indicator func. ✓ ✓ ✓∗ ✗
Shape as point [27] indicator func. ✗ ✓ ✓∗ ✗
Neural pull [18] SDF ✗ ✓ ✓ ✗
Point2Mesh [12] mesh ✗ ✓ ✓ ✗
Neural point [10] neural point ✗ ✓ ✓ ✓

Point cloud rasterization

Visibility Splatting [28] surfel ✓ ✓ ✓∗ ✓
NPBG [2] points ✓ ✗ ✗ ✗
ADOP [37] points ✓ ✗ ✗ ✗
Multi-plane [8] points ✓ ✗ ✗ ✗
NPBG++ [31] points ✓ ✗ ✗ ✓

Point cloud ray-casting

Iterative ray-surface intersection [1] points ✓ ✓ ✓ ✗

Point-Nerf [44] points ✓ ✓ ✓ ✓♭

NPLF [26] points ✓ ✗ ✗ ✗
Ours (pointersect) points ✓ ✓ ✓ ✓

reusing the tree to find neighbor points.
While octree greatly improves the speed for static P ,

for dynamic scenes or for inverse rendering, where many
points in P can change at every iteration, rebuilding the
tree at every iteration becomes an overhead. We build an
accelerated structure that can be built in parallel on GPU
to improve the speed of inverse rendering. The structure
is based on a voxel grid. Intuitively, as can be seen from
Fig. 8, we divide the space into voxels, and we record the
points contained in each voxel with a table. Thus, building
the voxel grid structure takes O(n) operations, where n is
the total number of points. When a ray is given, we trace
the ray through the voxel grid. The grid-ray intersection can
be computed in O(g) time for a given ray, where g is the
number of grid cells per dimension, and the computation for
each ray can be computed in parallel using multiple GPU
threads.

Overall, the time complexity of finding k nearest
points within a surrounding cylinder of radius δ is

O (n+mg +mq log(q)), where q is the number of points
lying within the cylinder, and the last term corresponds to
the cost of sorting the distances from the points to the ray.
In the case, when the points are uniformly distributed, in
expectation q = n/g3 Note that our implementation is not
optimized; for example, the optimal time complexity of re-
trieving an unordered k nearest points from the q points is
O(q). This structure can be slower than using an octree for
static scenes, which takes n log(n)+m log(n)+mq, but its
faster construction makes it more suitable for dynamic point
clouds. We also want to point out that while we implement
the accelerated structure in CUDA, the implementation is
not optimized, and the speed can be further improved, as we
will see in Appendix D.

C. Architecture details
We use a transformer to build the pointersect model. The

model architecture details, including the number of layers
and the layer composition, are illustrated in Fig. 9b.



Figure 8. The voxel grid structure utilizes the easy computation of
grid-ray intersection. Note that we need to trace the ray along the
slowest moving axis (in this case the x = ci planes).

The model architecture is composed of a Multi-layer Per-
ceptron (MLP) and a transformer. The MLP is used to con-
vert the input features (e.g., xyz, rgb) into the dimensionality
used by the transformer (which is 64). We do not use po-
sitional encoding for xyz like NeRF [22]—we found that
adding positional encoding reduces the estimation accuracy.

We use the standard transformer block from Vaswani et al.
[41]. We remove the layer normalization layer, and we use
a dropout probability of 0.1. The transformer is composed
of 4 layers of transformer blocks and has a dimension of 64.
We additional learn a token and insert it at the input of the
transformer, in order to estimate the ray traveling distance,
the surface normal, and the probability of hitting a surface.
We use the SiLU nonlinearity [13, 32].

The output of the transformer contain k + 1 tokens—1
corresponding to the special token and k for the neighboring
points. We use a linear layer to convert the special token to
the corresponding estimates. To compute the material blend-
ing weights, w =

[
w1, . . . , wk |wi ∈ [0, 1],

∑k
i=1 wi = 1

]
,

we use a multihead attention layer and take its output atten-
tion weights as w. In other words, the tokens are projected
by a linear layers as queries, keys, and values, and the soft-
max attention is used to compute the similarities between
the tokens and the special token.

D. Complexity analysis
In this section, we analyze the computation complexity of

our implementation. Pointersect is composed of three main
operations:

• finding points along the query ray (Appendix B);
• transform to the canonical coordinate (Section 3);
• and run the transformer model (Appendix C).

Finding neighboring points, as discussed in Appendix B,
has a time complexity of O(n +mg +mq log(q)), where
n is the number of points, m is the number of query rays,
g is the number of cells in each dimension of the grid, and

Figure 9. (a) Point-wise features extracted from camera rays and
(b) model architecture details.

q is the total number of points lying within a cylinder of
radius δ centered on the query ray. In the case, when the
points are uniformly distributed, in expectation q = n/g3

The transformation to the canonical coordinate is O(mk),
where k is the number of the nearest neighbor points. The
transformer has a time complexity of O(Lkd(k+d)), where
L and d are the number of layers and the dimension of the
transformer, respectively.

Fig. 10 shows the runtime measurements of various set-
tings. In the experiment, we simulate an adversarial scenario
where the points are uniformly sampled within a square cube
between [−1, 1]3 (instead of on surfaces as typical scenar-
ios). As can be seen from the results, the main bottlenecks
are finding neighboring points of a ray and the transformer.
While we implement the neighbor-point searching with a
custom CUDA kernel, there is still a significant room for
improvement. Nevertheless, with a point cloud containing
n = 10, 000 points and k = 40, our non-optimized imple-
mentation is capable of rendering 100 × 100 images in 10
fps, 200× 200 images in 5 fps, and 500× 400 in 1 fps.

E. Model training details
We train the pointersect model with the 48 training

meshes in the sketchfab dataset [30]. We center and scale



102 103 104 105 106

number of rays

10 1

100

tim
e 

(s
ec

on
d)

rest
transformer
coord. transform
find neighbor

(a) effect of number of rays.
number of points = 10,000

k = 40

102 103 104 105 106

number of rays

10 1

100

tim
e 

(s
ec

on
d)

(b) effect of number of rays.
number of points = 100,000

k = 40

25 50 75 100 125 150 175 200
k

0.00
0.05
0.10
0.15
0.20
0.25

tim
e 

(s
ec

on
d)

(c) effect of k.
number of points = 10,000
number of rays = 10,000

102 103 104 105 106

number of points

0.00

0.05

0.10

0.15

0.20

tim
e 

(s
ec

on
d)

(d) effect of number of points.
number of rays = 10,000

k = 40

Figure 10. Runtime measurements of the proposed method rendering (a, b) different numbers of rays, (c) different numbers of neighboring
points k, and (d) different number of points. We break the total runtime into four main categories and illustrate them as cumulative plots. In
the experiment, we uniformly sample points within a square cube between [−1, 1]3, uniformly sample ray origin in the cube, and uniformly
sample rays toward all directions. We repeat each case by three times and report the average. The experiment is conducted on a single A100
GPU and PyTorch 1.10.1 with the typical implementation of transformer.

the meshes such that the longest side of their bounding box
is 2 units in length. For each training iteration, we randomly
select one mesh and randomly construct 30 input cameras
and 1 target camera, which capture RGBD images using
the mesh-ray intersection method in Open3D [50]. We do
not apply anti-aliasing filters on the RGBD images. This
allows us to get the ground truth of the specific intersection
point, instead of a blurred and average one across a local
neighborhood. The ground-truth RGBD images are rendered
without global illumination. This is intentional and allows
the learned w to focus on material properties and not be
affected by lighting conditions and cast shadows. Both input
and target cameras have a field-of-view of 60 degrees.

We create the input point cloud using the input RGBD
images. Specifically, for each pixel in an input RGBD image,
we cast a ray from the pixel center towards the camera pin-
hole and use the depth map to determine the point location.
For each point, we gather the following information (see
Fig. 9a for illustration):
• xyz, or p ∈ R3, the location of the point;
• rgb, or c∈R3, color of the point in input RGBD image;
• r⃗d ∈S2, the cast camera ray direction (normalized);
• u ∈ R3, a vector from the point corresponding to the

current pixel to the point corresponding to the next pixel
in the x direction on the input RGBD image (see Fig. 9a);

• v ∈ R3, same as u but in the y direction;
• z ∈ S2, the optical axis direction of the input camera;
• ℓc ∈ {0, 1}, a binary indicator, which is set to 1 when
c contains valid information or 0 when we set c to
(0.5, 0.5, 0.5);

• and ℓa ∈ {0, 1}, a binary indicator, which is set to 1 when
r⃗d, u, v, v, z contain valid information or 0 when we set
all of them to zeors.

All of the features are point-wise and can be easily extracted
from the camera pose. To support point clouds that contain

only xyz information and without these information, we
randomly drop rgb and other features independently 50 % of
the time (and set ℓc and ℓa accordingly). During inference,
in all experiments shown in the paper, we do not use any of
the features, except xyz and rgb.

To diversify the sampling rates of the point cloud, we
randomly set the resolution (ranging from 30× 30 to 300×
300) and position (1 to 3 units from the origin) for each input
camera. The target camera has a 50 × 50 resolution, i.e.,
2500 query rays per iteration. To increase the diversity of
the query rays, we point the target camera towards a random
point in a centered box of a width equal to 1 unit and position
the camera at a random location (between 0.5 to 3 units to
the origin). To help learning the blending weights of color,
at every iteration we select a random image patch with a
size from 20 × 20 to 200 × 200 in the ImageNet dataset
as the texture map for the mesh. We also select a random
k ∈ [12, 200] at every iteration.

To optimize the loss function in Eq. (1), We use ADAM
[16] with β1 = 0.9, β2 = 0.98, and a learning rate schedule
used by Vaswani et al. [41] with a warm-up period of 4,000
iterations. Within the warm-up iterations, the learning rate
increases rapidly to 2e−6, and it gradually decreases after-
wards. We train the model for 350,000 iterations, and it takes
10 days on 8 A100 GPUs.

F. Inverse rendering: details
As we have discussed, the pointersect model f allows gra-

dient computation of color and surface normal with respect
to the point cloud’s xyz and rgb. In this section, we provide
details of our inverse rendering experiment in Section 4.5.
Our goal is to demonstrate the use of pointersect in an in-
verse rendering application, so we assume a simple scenario
where we have ground-truth RGB images, camera poses, and
foreground segmentation masks. Our purpose is to demon-
strate the potential, not to compare with the state-of-the-art
inverse rendering methods.



Given N input RGB images, I = {I1, . . . , IN |Ii ∈
Rh×w×3}, their corresponding foreground masks, Y =
{Y1, . . . , YN |Yi ∈ [0, 1]h×w}, camera extrinsic and
intrinsic matrices, and a noisy point cloud, P =
{(p1, c1), . . . , (pn, cn)}, our goal is to optimize the posi-
tion p = {p1, . . . , pn} and color c = {c1, . . . , cn} of the
points such that when we render P with pointersect from the
input camera views, the output images match the input ones.

Let rjk be a camera ray from the j-th input image. We use
bilinear interpolation to calculate the corresponding color
and the foreground mask values, ĉ(rjk) and ŷ(rjk), respec-
tively. We optimize the following loss function while fixing
the network parameter of the pointersect model (i.e., simply
use it as part of the rendering forward function):

min
P

N∑
j=1

∑
rjk

∥∥∥ĉ(rjk)− c(rjk,P)
∥∥∥2
2

(1)

− ŷ(rjk) log h(r
j
k,P) (2)

− (1− ŷ(rjk)) log
(
1− h(rjk,P)

)
(3)

+
(
n(rjk,P)× n(rjk+1u

,P)
)2

(4)

+
(
n(rjk,P)× n(rjk+1v

,P)
)2

, (5)

where c(rjk,P), n(rjk,P), and h(rjk,P) are pointersect’s es-
timates of color (using blending weights), surface normal,
and hit, respectively (see Section 3 in the main paper). In
the optimization program, we minimize the ℓ2 loss of color
(eq. (1)), the negative log-likelihood of foreground hit es-
timation (eq. (2) and eq. (3)), and the smoothness of the
estimated normal map between neighboring pixels on the
images (eq. (4) and eq. (5)). The loss terms related to normal
smoothness is optional—we add it for demonstration. Note
that we do not couple the input rgb colors with the ground-
truth surface normal to provide additional supervision to the
geometry—the color is computed simply by interpolating
the rgb values of input images.

We create an example problem by capturing 100 RGBD
images from the Stanford Bunny mesh [49] (whose size is
scaled to have 2 units in length), adding Gaussian noise with
standard deviation equal to 0.2 to the depth channel, and
using the RGBD images to create the noisy point cloud and
RGB images as our input images. We solve the optimization
problem using stochastic gradient descent with a learning
rate of 0.01 with 10000 iterations. Each iteration we select
a point in P , project it onto all input images, and cast rays
from the local 10× 10 patch of the projected pixel location.
We cast roughly a total of 10000 rays every iteration. At
the end of every iteration, we project the RGB values of the
point cloud to [0, 1]. Every 150 iterations, we use the ground-
truth foreground segmentation maps to perform silhouette
carving on P , which allows us to remove points that are

0 2000 4000 6000 8000 10000
iteration

21

22

23

24

25

PS
N

R
 (d

B
)

PSNR 
diff. angle 

20

30

40

di
ff.

 a
ng

le
 (°

)

Figure 11. PSNR and the angle between the ground-truth and
estimated color and surface normal, respectively, during the inverse
rendering optimization. The shade represents the standard deviation
of the values over the 100 input views.

Table 5. Optimize a noisy point cloud with pointersect.
100 input views 144 novel views

before opt. after opt. before opt. after opt.

PSNR (dB) ↑ 10.1± 0.5 24.6± 0.5 13.9± 0.8 25.7± 1.2
normal (angle (◦)) ↓ 54.0± 0.9 17.8± 2.1 55.3± 0.4 18.3± 2.7
depth (rmse) ↓ 0.46± 0.08 0.09± 0.06 0.33± 0.08 0.10± 0.07

apparently invalid. We insert new points by casting rays
from random input pixels using pointersect’s estimates of
point position and color. This operation is fast, easy to
implement, and significantly speeds up the optimization.
The entire optimization (10000 iterations) takes 1 hour on
one A100 GPU.

Figure 12 shows the results, Fig. 11 shows the optimiza-
tion progression, and Table 5 shows the statistics on 100
input views and 144 novel views. As can be seen, with the
capability to back-propogate gradient through pointersect,
we are able to optimize the point cloud to reduce the rgb,
depth, and normal errors.

G. Deviation from ground-truth surface
We measure the error “along” the ray as we are interested

in the accuracy from a ray intersection stand point, which
is the main focus of the paper. To further provide insight
into the accuracy of the surfaces that would be reconstructed,
Table 6 shows the Chamfer distance using the same setup as
Table 1.

Table 6. Chamfer distance (×10−3). Note that Chamfer distance
measures square distances, whereas the RMSE (used by the rest of
the paper) measure distance.

dataset Visibility splatting Poisson recon. Neural Points Ours

ShapeNet 2.32± 9.55 0.51± 1.98 0.30± 0.43 0.29± 0.48
Sketchfab 13.33± 25.53 1.58± 4.30 0.98± 2.47 0.87± 2.19

H. Additional results
Figure 13 extends Figure 4 in the paper and shows two

results from the Sketchfab test dataset. The supplementary



Figure 12. We back-propagate gradient through the pointersect model to optimize a noisy point cloud, comparing output images with the
given clean RGB images and foreground binary mask.

offline website showcases the result videos of Section 4.2,
Section 4.3, Section 4.5, and Section 4.6. In the following,
we provide two ablation studies on the number of views, the
choice of k, and the sampling rate (i.e., density) of the point
clouds.

H.1. Number of input views and the choice of k

In Section 4.2, we constructed the input point clouds by
capturing 6 200× 200 RGBD images, each from front, back,
left, right, top, and bottom, of the object of interest. The
input point cloud, constructed in this manner, may fail to
contain occluded part of the object. Here, we repeat the
experiment with an increased number of input RGBD im-
ages, 30 and 60. Specifically, we randomly sample 30 (or
60) cameras uniformly within a sphere shell with inner ra-
dius of 3 and outer radius of 4. All cameras have a field
of view of 30 degrees, a resolution of 200× 200, and point
to the center of the object of interest. All settings are the
same as those in Section 4.2—k = 40, δ = 0.1, and we
provide ground-truth vertex normal to Poisson reconstruc-
tion and visibility splatting. The depth and normal errors
are computed only on non-hole pixels. Additionally, since
increasing the number of input views increases the density
of the point cloud, choosing the same number of nearest
points, i.e., using the same k, effectively reduces the size of
the neighborhood the pointersect model can attend to. Thus,
we also include a pointersect result where we increase k to
200, which retains the expected neighborhood size for 30
input views and halves it for 60 input views.

The results are shown in Tab. 7. As can be seen, pointer-
sect, regardless of the choice of k, achieves the best results
in color estimations. Increasing k (thus allows pointersect
to attend to a larger neighborhood) also makes pointersect
outperform all baselines in terms of the estimation accuracy

of depth and surface normal.

H.2. Number of views vs. point density

In this experiment, we study the effect of point density
when we capture the scene in a frontal-view position. We
take the Stanford Bunny [49] and capture 1 RGBD image
from the center frontal view in various resolutions. Since the
field-of-view of remain the same, increasing the resolution
increases the density of the points. We also capture 4 more
RGBD images at the 4 corners of the axis-aligned bounding
box, also from the frontal view. The output cameras are on a
circle centered at the center viewpoint and looking towards
the center of the bunny. All settings are the same as those
in Section 4.2, i.e., k = 40, δ = 0.1, and we provide the
ground-truth vertex normal to Poisson surface reconstruction
and visibility splatting.

The results are shown in Table 8 and Figure 14. As can
be seen, even with a single view point, pointersect is able to
render the point cloud from novel view points. Increasing the
point density improves the estimation accuracy of pointer-
sect. When we use only a single view (and part of the bunny
is occluded and missing in the input point cloud), pointersect
renders faithfully the point cloud and thus produces with a
missing ear. The occluded ear appears when we include all
5 input images.

H.3. Poisson without ground-truth vertex normal

In all experiments in the paper (except the ones on real
Lidar point cloud where we do not have ground-truth vertex
normal), we provide the ground-truth vertex normal to Pois-
son surface reconstruction. However, in practice, ground-
truth vertex normal is difficult to get, and thus we often need
to estimate the vertex normal from the point cloud before
computing Poisson reconstruction.



Figure 13. Additional example results of pointersect and baselines on Sketchfab dataset. Mesh credit: c Marchal [20]. c Marchal [19].

In Fig. 16 we show an additional result where Poisson
reconstruction is given the estimated vertex normal. We
estimate the vertex normal directly from the point cloud
using Open3D, which estimates vertex normal by fitting
local planes. As can be seen, the output quality of Possion
reconstruction is significantly affected when we use vertex
normal that contains a small amount of noise. Pointersect,
on the other hand, does not use vertex normal, so the result
is unaffected.

I. Noisy point cloud from handheld devices
Pointersect is trained on clean point clouds that are cre-

ated from meshes. Thus, pointersect renders the input point

cloud as is—if an input point cloud contains noisy points,
the noise will appear in the rendered images and estimated
depth and normal maps. It would be interesting to see what
would happen if we directly apply the pointersect model on
a noisy point cloud that is captured by a handheld device.

We take 19 RGBD images from the ARKitScenes
dataset [4], where the depth maps and camera poses are
estimated by ARKit. We perform a simple point-cloud out-
lier removal utilizing the confidence map output by ARKit.
We then perform a voxel downsampling on the noisy point
cloud with a cell width of 0.05. We apply various methods to
render novel views, including visibility splatting where each
point is rendered as 1 pixel, screened Poisson reconstruction,



Table 7. Test results on three datasets. Inputs are 30 or 60 RGBD images captured at random locations within sphere shell, pointing toward
the center. All test meshes are unseen during training. NGP does not use depth information and is trained for 1000 epochs (about 10 minutes).
It is included as a reference baseline.

Method Metrics
tex-models ShapeNet Sketchfab

30 input views 60 input views 30 input views 60 input views 30 input views 60 input views

Visibility
splatting

depth (RMSE) ↓ 0.06± 0.07 0.04± 0.03 0.03± 0.03 0.03± 0.03 0.05± 0.03 0.04± 0.02
normal (angle (◦)) ↓ 5.59± 2.40 5.72± 2.64 6.85± 3.67 7.01± 3.82 7.84± 3.06 8.13± 3.31
hit (accuracy (%)) ↑ 99.1± 0.3 99.0± 0.3 99.1± 0.5 99.1± 0.6 99.3± 0.2 99.2± 0.2
color (PSNR (dB)) ↑ 22.0± 1.8 21.9± 2.1 24.0± 3.0 23.8± 3.1 23.3± 1.3 23.2± 1.5
color (SSIM) ↑ 0.9± 0.0 0.9± 0.0 0.9± 0.1 0.9± 0.1 0.9± 0.1 0.9± 0.1
color (LPIPS) ↓ 0.07± 0.05 0.05± 0.02 0.05± 0.03 0.04± 0.03 0.08± 0.06 0.07± 0.03

Poisson
surface
recon.

depth (RMSE) ↓ 0.02± 0.04 0.02± 0.04 0.03± 0.07 0.03± 0.06 0.06± 0.09 0.06± 0.09
normal (angle (◦)) ↓ 5.76± 2.65 5.46± 2.53 11.14± 6.04 10.49± 6.89 10.59± 6.51 10.14± 6.18
hit (accuracy (%)) ↑ 99.9± 0.1 99.9± 0.1 98.1± 7.3 99.3± 1.3 99.6± 0.4 99.6± 0.6
color (PSNR (dB)) ↑ 27.5± 3.1 27.7± 3.1 - - 26.5± 3.6 26.5± 3.9
color (SSIM) ↑ 0.9± 0.0 0.9± 0.0 0.9± 0.1 0.9± 0.0 0.9± 0.0 0.9± 0.0
color (LPIPS) ↓ 0.05± 0.03 0.05± 0.03 0.05± 0.06 0.05± 0.04 0.08± 0.04 0.08± 0.04

Neural
points
[10]

depth (RMSE) ↓ 0.04± 0.02 0.04± 0.02 0.03± 0.03 0.03± 0.03 0.04± 0.02 0.04± 0.02
normal (angle (◦)) ↓ 12.59± 2.73 13.00± 2.58 16.93± 4.57 16.86± 4.44 15.24± 3.21 15.64± 3.15
hit (accuracy (%)) ↑ 99.0± 0.4 99.0± 0.4 99.0± 0.7 99.0± 0.7 99.2± 0.2 99.2± 0.2
color (PSNR (dB)) ↑ not supp. not supp. not supp. not supp. not supp. not supp.
color (SSIM) ↑ not supp. not supp. not supp. not supp. not supp. not supp.
color (LPIPS) ↓ not supp. not supp. not supp. not supp. not supp. not supp.

NPBG++
[31]

depth (RMSE) ↓ not supp. not supp. not supp. not supp. not supp. not supp.
normal (angle (◦)) ↓ not supp. not supp. not supp. not supp. not supp. not supp.
hit (accuracy (%)) ↑ not supp. not supp. not supp. not supp. not supp. not supp.
color (PSNR (dB)) ↑ 17.2± 2.4 17.3± 2.4 19.8± 4.1 19.8± 4.1 18.8± 1.7 18.9± 1.7
color (SSIM) ↑ 0.7± 0.1 0.7± 0.1 0.8± 0.1 0.8± 0.1 0.8± 0.1 0.8± 0.1
color (LPIPS) ↓ 0.23± 0.05 0.23± 0.05 0.17± 0.08 0.17± 0.08 0.21± 0.07 0.21± 0.06

NGP [24]

depth (RMSE) ↓ not supp. not supp. not supp. not supp. not supp. not supp.
normal (angle (◦)) ↓ not supp. not supp. not supp. not supp. not supp. not supp.
hit (accuracy (%)) ↑ not supp. not supp. not supp. not supp. not supp. not supp.
color (PSNR (dB)) ↑ 18.3± 7.7 22.3± 8.2 - - 23.7± 6.9 24.8± 7.3
color (SSIM) ↑ 0.8± 0.1 0.8± 0.2 0.9± 0.1 0.9± 0.1 0.9± 0.1 0.9± 0.1
color (LPIPS) ↓ 0.22± 0.14 0.16± 0.19 0.14± 0.10 0.17± 0.14 0.14± 0.10 0.12± 0.11

Proposed
(k=40)

depth (RMSE) ↓ 0.02± 0.02 0.02± 0.02 0.02± 0.02 0.02± 0.02 0.03± 0.02 0.03± 0.02
normal (angle (◦)) ↓ 5.85± 1.82 6.30± 1.75 8.85± 3.61 9.25± 3.29 7.01± 2.11 7.47± 2.02
hit (accuracy (%)) ↑ 99.9± 0.0 99.9± 0.0 99.8± 0.3 99.8± 0.2 99.9± 0.0 99.9± 0.0
color (PSNR (dB)) ↑ 32.4± 2.1 33.3± 1.9 29.7± 3.8 30.5± 3.9 30.3± 2.7 30.9± 2.7
color (SSIM) ↑ 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
color (LPIPS) ↓ 0.02± 0.02 0.01± 0.02 0.03± 0.03 0.02± 0.02 0.04± 0.04 0.04± 0.04

Proposed
(k=200)

depth (RMSE) ↓ 0.01± 0.01 0.01± 0.01 0.01± 0.01 0.01± 0.01 0.01± 0.01 0.01± 0.01
normal (angle (◦)) ↓ 5.09± 1.83 4.91± 1.65 8.08± 3.57 7.59± 3.38 5.88± 1.96 5.43± 1.69
hit (accuracy (%)) ↑ 99.9± 0.1 99.9± 0.0 99.7± 0.3 99.8± 0.3 99.9± 0.1 99.9± 0.0
color (PSNR (dB)) ↑ 32.4± 2.6 33.3± 2.6 29.7± 3.6 30.4± 3.8 30.9± 2.7 31.6± 2.8
color (SSIM) ↑ 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
color (LPIPS) ↓ 0.01± 0.01 0.01± 0.00 0.03± 0.03 0.02± 0.02 0.04± 0.04 0.04± 0.04

IBRNet [43], NGP [24] where we train the model for 200
epochs, and the same pointersect model used in the paper
that is trained on clean point clouds. We use the same setting
as those in Section 4.6: k = 100, δ = 0.2. Note that Poisson
and NGP utilize per-scene optimization; IBRNet does not
utilize depth information; pointersect never sees real noisy
RGBD images during training. It is simply an exploratory

experiment to inspire future work.
Figure 15 shows the results. As can be seen, while the

pointersect model never sees real-world noisy point clouds
during training, it is able to render the point cloud with
reasonable quality. Utilizing the depth information, point-
ersect can directly renders the input images without any
training, and the rendered results do not contain floating



Table 8. Test results on the Stanford Bunny mesh with a single input RGBD image captured at the frontal view. Target views are a frontal
circle looking towards the mesh.

Method Metrics 1 view
25× 25

1 view
50× 50

1 view
100× 100

1 view
200× 200

5 views
25× 25

5 views
50× 50

5 views
100× 100

5 views
200× 200

Visibility
splatting

depth (RMSE) ↓ 0.07± 0.05 0.07± 0.04 0.05± 0.03 0.02± 0.01 0.21± 0.02 0.19± 0.02 0.15± 0.01 0.04± 0.01
normal (angle (◦)) ↓ 4.24± 0.44 4.28± 0.34 3.82± 0.26 3.07± 0.10 11.53± 0.87 10.39± 0.82 7.62± 0.56 3.64± 0.22
hit (accuracy (%)) ↑ 62.8± 1.2 64.9± 1.2 73.1± 1.1 93.0± 1.0 63.5± 1.2 67.5± 1.2 79.7± 0.9 97.7± 0.1
color (PSNR (dB)) ↑ 11.0± 0.2 11.2± 0.2 12.4± 0.3 18.2± 0.3 11.1± 0.2 11.5± 0.2 13.5± 0.3 21.6± 0.2
color (SSIM) ↑ 0.6± 0.0 0.6± 0.0 0.6± 0.0 0.8± 0.0 0.6± 0.0 0.6± 0.0 0.6± 0.0 0.8± 0.0
color (LPIPS) ↓ 0.42± 0.02 0.36± 0.02 0.33± 0.01 0.17± 0.01 0.38± 0.02 0.32± 0.01 0.29± 0.01 0.12± 0.01

Poisson
surface
recon.

depth (RMSE) ↓ 0.09± 0.02 0.09± 0.03 0.08± 0.03 0.07± 0.03 0.07± 0.02 0.05± 0.02 0.03± 0.02 0.02± 0.02
normal (angle (◦)) ↓ 27.45± 1.45 19.96± 1.28 13.44± 1.67 8.79± 1.53 21.46± 1.07 14.90± 1.00 8.69± 0.69 5.11± 0.44
hit (accuracy (%)) ↑ 76.3± 3.3 72.2± 4.8 72.2± 4.8 73.0± 4.9 76.6± 3.2 77.7± 4.5 82.4± 3.9 88.3± 1.2
color (PSNR (dB)) ↑ 12.0± 0.6 10.6± 0.8 11.0± 0.8 11.2± 0.9 11.5± 0.6 12.1± 1.2 13.4± 1.5 15.7± 0.6
color (SSIM) ↑ 0.4± 0.0 0.4± 0.0 0.5± 0.0 0.6± 0.0 0.4± 0.0 0.5± 0.0 0.6± 0.0 0.8± 0.0
color (LPIPS) ↓ 0.53± 0.03 0.51± 0.04 0.45± 0.03 0.38± 0.03 0.48± 0.03 0.41± 0.04 0.30± 0.04 0.19± 0.02

Neural
points
[10]

depth (RMSE) ↓ 0.04± 0.01 0.03± 0.01 0.02± 0.00 0.02± 0.00 0.07± 0.01 0.04± 0.01 0.06± 0.01 0.04± 0.01
normal (angle (◦)) ↓ 18.01± 0.14 14.94± 0.41 11.83± 0.50 9.73± 0.31 18.37± 0.36 15.04± 0.78 11.91± 0.68 9.87± 0.62
hit (accuracy (%)) ↑ 86.9± 1.2 95.1± 1.2 96.3± 1.2 96.8± 1.2 94.4± 0.7 98.1± 0.1 98.3± 0.2 98.7± 0.1
color (PSNR (dB)) ↑ not supp. not supp. not supp. not supp. not supp. not supp. not supp. not supp.
color (SSIM) ↑ not supp. not supp. not supp. not supp. not supp. not supp. not supp. not supp.
color (LPIPS) ↓ not supp. not supp. not supp. not supp. not supp. not supp. not supp. not supp.

Proposed

depth (RMSE) ↓ 0.02± 0.01 0.02± 0.00 0.01± 0.01 0.01± 0.00 0.03± 0.01 0.02± 0.01 0.01± 0.01 0.01± 0.01
normal (angle (◦)) ↓ 15.58± 0.45 8.73± 0.31 5.07± 0.10 3.90± 0.10 15.07± 0.69 7.79± 0.52 4.87± 0.26 3.86± 0.16
hit (accuracy (%)) ↑ 91.4± 1.0 95.4± 1.2 96.4± 1.2 96.8± 1.2 96.3± 1.0 99.4± 0.1 99.7± 0.1 99.8± 0.1
color (PSNR (dB)) ↑ 16.4± 0.4 19.2± 0.7 20.6± 1.0 21.8± 1.4 18.7± 0.9 22.9± 0.4 25.5± 0.3 28.8± 0.6
color (SSIM) ↑ 0.6± 0.0 0.7± 0.0 0.8± 0.0 0.9± 0.0 0.7± 0.0 0.8± 0.0 0.9± 0.0 0.9± 0.0
color (LPIPS) ↓ 0.32± 0.01 0.26± 0.01 0.16± 0.01 0.09± 0.01 0.29± 0.01 0.20± 0.01 0.10± 0.01 0.04± 0.00

Figure 14. The effect of number of views and the sampling rate of the input point cloud. We create various kinds of input point clouds of the
Stanford Bunny [49] by capturing 1 or 5 input RGBD images of various resolutions. The first row shows the 5 input RGBD images (with the
center one enlarged). The input point cloud becomes denser from left to right when the resolution of the input images increases. With 5
input views, the point cloud covers a wider area than using only the center input view. The bottom three rows show the output rendering
from pointersect at 3 novel viewpoints.



artifacts. Since pointersect does not perform any per-scene
optimization, the rendered images present the varying expo-
sure and white-balance settings in the input images / point
cloud. While the surface normal estimation are reasonable,
they are affected most severe by the noise in the point cloud
and camera poses compared to the estimated depth map and
the results when the input point cloud is clean.

J. Sketchfab dataset
We train our model on a subset of the Sketchfab dataset

that was used by Qian et al. [30] to train Neural Points [10].
The original dataset contains 90 training meshes and 13 test
meshes. However, we use only the 48 training meshes that
are with variants of the Creative Common license and search-
able on sketchfab.com. We use the same 13 test meshes —
they are all with the Creative Common license. In Figure 17,
we plot the training and test meshes, and in Table 9 and Ta-
ble 10 we list their download links and license information.

References
[1] Anders Adamson and Marc Alexa. Approximating and in-

tersecting surfaces from points. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pages 230–239, 2003. 2

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graphics.
In European Conference on Computer Vision, pages 696–712.
Springer, 2020. 2

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5855–5864, 2021. 1

[4] Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry,
Yuri Feigin, Peter Fu, Thomas Gebauer, Brandon Joffe, Daniel
Kurz, Arik Schwartz, and Elad Shulman. ARKitScenes - a
diverse real-world dataset for 3d indoor scene understanding
using mobile RGB-D data. In Thirty-fifth Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021. 7, 14

[5] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance
decomposition from image collections. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 12684–12694, 2021. 1, 2

[6] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 14124–14133, 2021. 1, 2

[7] Inchang Choi, Orazio Gallo, Alejandro Troccoli, Min H Kim,
and Jan Kautz. Extreme view synthesis. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 7781–7790, 2019. 1, 2

[8] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural point cloud rendering via multi-plane

projection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7830–7839,
2020. 2

[9] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan.
Depth-supervised nerf: Fewer views and faster training for
free. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12882–12891,
2022. 1, 2

[10] Wanquan Feng, Jin Li, Hongrui Cai, Xiaonan Luo, and Juy-
ong Zhang. Neural points: Point cloud representation with
neural fields for arbitrary upsampling. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
18633–18642, 2022. 2, 8, 9, 10

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 1, 2

[12] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-
Or. Point2mesh: a self-prior for deformable meshes. ACM
Transactions on Graphics (TOG), 39(4):126–1, 2020. 2

[13] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 3

[14] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Pois-
son surface reconstruction. In Proceedings of the fourth Eu-
rographics symposium on Geometry processing, volume 7,
2006. 2

[15] Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer,
Kari Pulli, and Gordon Wetzstein. Neural lumigraph ren-
dering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4287–4297,
2021. 1, 2

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 4

[17] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient
sphere-based neural rendering. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1440–
1449, 2021. 1, 2

[18] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Neural-pull: Learning signed distance function from
point clouds by learning to pull space onto surface. In In-
ternational Conference on Machine Learning (ICML), pages
7246–7257. PMLR, 2021. 2

[19] Geoffrey Marchal. Cupid. https://skfb.ly/6vN6Z. 7
[20] Geoffrey Marchal. Seated jew. https://skfb.ly/6ynCI. 7
[21] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Transactions
on Graphics (TOG), 38(4):1–14, 2019. 1, 2

[22] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1):99–106, 2021. 1, 2,
3

[23] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. arXiv preprint arXiv:2201.05989, 2022.

sketchfab.com
https://skfb.ly/6vN6Z
https://skfb.ly/6ynCI


Table 9. Download links and credits of the entire Sketchfab training set used to train the model.

Name Download link Credit

Alliance-statue https://skfb.ly/DHIV ”Warcraft Alliance Statue” (https://skfb.ly/DHIV) by ahtiandr is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

Amphitrite https://skfb.ly/6n9PF ”Amphitrite - Louvre Museum (Low Definition)” (https://skfb.ly/6n9PF) by Benjamin Bardou is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

Ancient-turti https://skfb.ly/6o9KR ”Archelon - Dragon Sea Turtle” (https://skfb.ly/6o9KR) by inkhero is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

Angel5 https://skfb.ly/6svWA ”Angel Sculpture 3D Scan (Einscan-S)” (https://skfb.ly/6svWA) by 3DWP is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

Angel6 https://skfb.ly/WyIS ”Angels” (https://skfb.ly/WyIS) by rvscanners is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Angel-statue https://skfb.ly/6qxUQ ”Angel Statue in Fossano” (https://skfb.ly/6qxUQ) by Albyfos is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Angel2 https://skfb.ly/SNow ”Angel 00” (https://skfb.ly/SNow) by TomaszGap is licensed under CC Attribution-NonCommercial-NoDerivs (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Angel3 https://skfb.ly/KVRY ”Angel” (https://skfb.ly/KVRY) by Medolino is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Angel4 https://skfb.ly/SZOv ”Baptismal Angel kneeling” (https://skfb.ly/SZOv) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Angel-diffuse2 https://skfb.ly/69usM ”Angel playing harp” (https://skfb.ly/69usM) by OpenScan is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Armadillo https://skfb.ly/otzQs ”Stanford Armadillo PBR” (https://skfb.ly/otzQs) by hackmans is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Buddha-sit https://skfb.ly/6nXwQ ”Buddha” (https://skfb.ly/6nXwQ) by icenvain is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Camera https://skfb.ly/Lp7U ”Panasonic GH4 Body” (https://skfb.ly/Lp7U) by ScanSource 3D is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Compressor https://skfb.ly/6oIZS ”Compressor Scan” (https://skfb.ly/6oIZS) by GoMeasure3D is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Dragon-plate https://skfb.ly/osUnp ”Dragon (decimated sculpt)” (https://skfb.ly/osUnp) by Ashraf Bouhadida is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Dragon- stand https://skfb.ly/6oTOQ ”Chinese Dragon” (https://skfb.ly/6oTOQ) by icenvain is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Dragon-warrior https://skfb.ly/otvrO ”Dragon-stl” (https://skfb.ly/otvrO) by Thunk3D 3D Scanner is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Dragon-wing https://skfb.ly/M9KW ”Wooden Dragon” (https://skfb.ly/M9KW) by jschmidtcreaform is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Dragon2 https://skfb.ly/BZsM ”XYZ RGB Dragon” (https://skfb.ly/BZsM) by 3D graphics 101 is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Fox-skull https://skfb.ly/6UoqE ”Grey Fox skull” (https://skfb.ly/6UoqE) by RISD Nature Lab is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Ganesha https://skfb.ly/66opT ”The elephant god Ganesha” (https://skfb.ly/66opT) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Ganesha-plane https://skfb.ly/ovrr6 ”Ganesha” (https://skfb.ly/ovrr6) by Paulotronics is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Gargo https://skfb.ly/6S8qQ ”Gargo” (https://skfb.ly/6S8qQ) by rudyprieto is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Grid-dog https://skfb.ly/DTuH ”Girl With Dog” (https://skfb.ly/DTuH) by pencas is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Golden-elephant https://skfb.ly/GZSL ”Golden Ephant” (https://skfb.ly/GZSL) by dievitacola is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Guanyiny https://skfb.ly/ZuHU ”Guanyin” (https://skfb.ly/ZuHU) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Happy-vrip https://skfb.ly/BYQD ”Happy Buddha (Stanford)” (https://skfb.ly/BYQD) by 3D graphics 101 is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Lion-ball https://skfb.ly/6GDqU ”King of Narnia: ASLAN” (https://skfb.ly/6GDqU) by Anahit Takiryan is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Man-face https://skfb.ly/GrGu ”Bust of a Roman” (https://skfb.ly/GrGu) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Man-statue https://skfb.ly/T9oz ”Man On Bench Statue PHOTOGRAMMETRY” (https://skfb.ly/T9oz) by MrDavids1 is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Maria https://skfb.ly/6tzH7 ”Maria Fjodorovna Barjatinskaja” (https://skfb.ly/6tzH7) by Geoffrey Marchal is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Mesh-little-angle https://skfb.ly/6s8yO ”Little Angle” (https://skfb.ly/6s8yO) by MicMac is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Modello-buddha https://skfb.ly/6qnIn ”Wooden Buddha statuette” (https://skfb.ly/6qnIn) by andrea.notarstefano is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Mozart https://skfb.ly/FZyK ”The Infant Mozart” (https://skfb.ly/FZyK) by Geoffrey Marchal is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Roman- sphinx https://skfb.ly/Y9sx ”Roman Sphinx” (https://skfb.ly/Y9sx) by tony-eight is licensed under Creative Commons Attribution-NonCommercial (http://creativecommons.org/licenses/by-

nc/4.0/).
Snake https://skfb.ly/BrOL ”Cobra Statue” (https://skfb.ly/BrOL) by Jonathan Williamson is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Statue-air-force https://skfb.ly/LZBS ”a sculpture in Air Force Museum of Vietnam” (https://skfb.ly/LZBS) by HoangHiepVu is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Statue-child-fish https://skfb.ly/6pJ9s ”Château de Chamarande - France” (https://skfb.ly/6pJ9s) by Sakado is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Statue-death https://skfb.ly/ovIRF ”The death and the mother” (https://skfb.ly/ovIRF) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Statue-madona https://skfb.ly/Lv9v ”Madona Sculpture” (https://skfb.ly/Lv9v) by jan.zachar is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Statue-mother https://skfb.ly/6pUOp ”Pieta” (https://skfb.ly/6pUOp) by MSU Broad Art Museum is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).
Statue-napoleon https://skfb.ly/6xHwD ”Equestrian statue of Napoleon” (https://skfb.ly/6xHwD) by Lo¨ic Norgeot is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Statue- neptune-horse https://skfb.ly/6npKK ”Neptune - Louvre Museum” (https://skfb.ly/6npKK) by Benjamin Bardou is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Statue-oxen https://skfb.ly/R9Ps ”Ox Statue (Kek Lok Si Buddhist Temple, Penang)” (https://skfb.ly/R9Ps) by nate siddle is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Two-wrestiers-in-combat https://skfb.ly/RTzv ”Two wrestlers in combat (repost)” (https://skfb.ly/RTzv) by Geoffrey Marchal is licensed under Creative Commons Attribution

(http://creativecommons.org/licenses/by/4.0/).
Vase-empire https://skfb.ly/6uDFR ”Empire vase” (https://skfb.ly/6uDFR) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial

(http://creativecommons.org/licenses/by-nc/4.0/).
Vishnu https://skfb.ly/6nCoN ”The God Vishnu” (https://skfb.ly/6nCoN) by Geoffrey Marchal is licensed under Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/).



Table 10. Download links and credits of the test set of the Sketchfab dataset [30].

Name Download link Credit

A9-vulcan aligned https://skfb.ly/6AAGM ”Vulcan” (https://skfb.ly/6AAGM) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

a72-seated jew aligned https://skfb.ly/6ynCI ”Seated Jew” (https://skfb.ly/6ynCI) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

asklepios aligned https://skfb.ly/6zt76 ”Young roman as Asklepios” (https://skfb.ly/6zt76) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

baron seutin aligned https://skfb.ly/6Bq6Y ”Baron Seutin” (https://skfb.ly/6Bq6Y) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

charite - CleanUp - LowPoly aligned https://skfb.ly/6yWCX ”The Charity” (https://skfb.ly/6yWCX) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

cheval terracotta - LowPoly-RealOne aligned https://skfb.ly/6APDT ”Relief in terracotta” (https://skfb.ly/6APDT) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

cupid aligned https://skfb.ly/6vN6Z ”Cupid” (https://skfb.ly/6vN6Z) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

dame assise - CleanUp - LowPoly aligned https://skfb.ly/6BNFn ”Seated Lady” (https://skfb.ly/6BNFn) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

drunkard - CleanUp - LowPoly aligned https://skfb.ly/6BH8D ”Drunkard - Cap Re” (https://skfb.ly/6BH8D) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

Gramme aligned https://skfb.ly/6ABqV ”Statue of Zénobe Gramme” (https://skfb.ly/6ABqV) by LZ Creation is licensed under Creative Commons Attribution
(http://creativecommons.org/licenses/by/4.0/).

madeleine aligned https://skfb.ly/6AtTy ”Marie-Madeleine” (https://skfb.ly/6AtTy) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

retheur - LowPoly aligned https://skfb.ly/ooIRB ”Bust of a rhetorician Restored” (https://skfb.ly/ooIRB) by Digital Restoration is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

saint lambert aligned https://skfb.ly/6ANWw ”Lambert de Maestricht and Liège” (https://skfb.ly/6ANWw) by Geoffrey Marchal is licensed under Creative Commons Attribution-NonCommercial
(http://creativecommons.org/licenses/by-nc/4.0/).

1, 2
[24] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (TOG),
41(4):102:1–102:15, July 2022. 8

[25] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3504–3515, 2020. 1,
2

[26] Julian Ost, Issam Laradji, Alejandro Newell, Yuval Bahat,
and Felix Heide. Neural point light fields. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18419–18429, 2022. 2

[27] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape as points: A
differentiable poisson solver. Advances in Neural Information
Processing Systems (NeurIPS), 34:13032–13044, 2021. 2

[28] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and
Markus Gross. Surfels: Surface elements as rendering primi-
tives. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 335–342,
2000. 2

[29] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
based rendering: From theory to implementation. Morgan
Kaufmann, 2016. 1

[30] Yue Qian, Junhui Hou, Sam Kwong, and Ying He. Pugeo-net:
A geometry-centric network for 3d point cloud upsampling.
In European Conference on Computer Vision (ECCV), pages
752–769. Springer, 2020. 3, 10, 12, 15

[31] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempit-
sky, and Evgeny Burnaev. NPBG++: Accelerating neural
point-based graphics. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 15969–15979,
2022. 2, 8

[32] Prajit Ramachandran, Barret Zoph, and Quoc Le. Search-

ing for activation functions. In International Conference on
Learning Representations (ICLR), 2018. 3

[33] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 14335–
14345, 2021. 1, 2

[34] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
European Conference on Computer Vision, pages 623–640.
Springer, 2020. 1, 2

[35] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12216–12225, 2021.
1, 2

[36] Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P
Srinivasan, and Matthias Nießner. Dense depth priors for
neural radiance fields from sparse input views. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12892–12901, 2022. 1, 2

[37] Darius Rückert, Linus Franke, and Marc Stamminger. ADOP:
Approximate differentiable one-pixel point rendering. ACM
Transactions on Graphics (TOG), 41(4):1–14, 2022. 2

[38] Vincent Sitzmann, Semon Rezchikov, Bill Freeman, Josh
Tenenbaum, and Fredo Durand. Light field networks: Neural
scene representations with single-evaluation rendering. Ad-
vances in Neural Information Processing Systems, 34:19313–
19325, 2021. 1, 2

[39] Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T Barron. Nerv: Neu-
ral reflectance and visibility fields for relighting and view
synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7495–7504,
2021. 1, 2

[40] Mohammed Suhail, Carlos Esteves, Leonid Sigal, and
Ameesh Makadia. Light field neural rendering. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8269–8279, 2022. 1, 2



[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in Neural
Information Processing Systems (NeurIPS), 30:5998–6008,
2017. 3, 4

[42] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 1

[43] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4690–4699, 2021. 1, 2, 8

[44] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,
Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5438–5448, 2022. 2

[45] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems,
33:2492–2502, 2020. 1, 2

[46] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5752–5761,
2021. 1, 2

[47] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4578–4587, 2021. 1, 2

[48] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Nerfactor:
Neural factorization of shape and reflectance under an un-
known illumination. ACM Transactions on Graphics (TOG),
40(6):1–18, 2021. 1, 2

[49] Kun Zhou, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining
Guo, and Heung-Yeung Shum. Texturemontage: Seamless
texturing of arbitrary surfaces from multiple images. ACM
Transactions on Graphics (TOG), 24(3):1148–1155, 2005.
Available at http://kunzhou.net/tex-models.htm. 5, 6, 9

[50] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 4

http://kunzhou.net/tex-models.htm


(a) Novel-view rendering on noisy point cloud captured by a handheld device

(b) Depth (left) and surface normal (right) estimation at the viewpoints in (a).

Figure 15. Results on noisy depth maps captured by a handheld device. Inputs are 19 RGBD images from the ARKitScenes dataset [4],
where the depth maps and camera poses are estimated by ARKit and thus contain noise. Note that the pointersect model is not trained to
render noisy point clouds and has never seen real noisy RGBD images during training. The result is provided to motivate future work.



Figure 16. Novel view rendering on Buddha. The output quality of Poisson surface reconstruction depends highly on the quality of the
vertex normal. Pointersect does not need nor use vertex normal.

(a) 48 training meshes (b) 13 test meshes

Figure 17. (a) The entire training meshes used to train our model. The meshes are from a subset of the Sketchfab dataset [30]. (b) is the test
meshes. See Table 9 and Table 10 for credits.


	. Additional related work
	. Finding points along a ray
	. Architecture details
	. Complexity analysis
	. Model training details
	. Inverse rendering: details
	. Deviation from ground-truth surface
	. Additional results
	. Number of input views and the choice of k
	. Number of views vs@汥瑀瑯步渠. point density
	. Poisson without ground-truth vertex normal

	. Noisy point cloud from handheld devices
	. Sketchfab dataset

