A. Operation Descriptions
A.1. Definitions

A convolution operation is formulated as
z=W®x+0b, (D

where z € R%*"X% and » € R *"*" are the input and output tensors, respectively, W € R *F*kx¢ci and b € R are the
kernel and the bias of the convolution, and k is the kernel size, which is an odd number, ¢;, ¢, are the numbers of the input
and output channels, and h, w are the input height and width. The element of z at (p, s, t) is:

ci—1 m

z(p,s,t) = b(p +Z Z Z W(p,n,7,0) x x({, s+ n,t + 7). (2)

(=0 n=—mT=—m

where m = | k/2]. For convenience, except for the middle two dimensions of the convolution kernel, all indices start from
0. The index range of the two dimensions in the middle of the convolution kernel is [—m, m]. If either s + 1 or ¢ + 7 is out
of index range, z(¢, s + n,t + 7) is 0.

1 is the identity kernel of the convolution operation with:

1, p=qgands=t=0,
I(p,s,t,q) = ) 3
(» 9 {0, otherwise. )
We define the concatenation of the feature vectors in the channel dimension as z = B] , where z € RoOx<hxw o <

Re2¥mxw and z ¢ R(e1te2)xhxw The element of z at (p, s, t) is:

2(p, s,t) = z(p, 5,1), p < ci, “
Y y(p —c1,8,t), otherwise.

The concatenation of the convolution kernels in the horizontal direction (i.e., input-dimension concatenation) is defined as
W = [Wh,1, Wh,2], where W), ; € RéoxFxkxca 1y, , € Reoxkxkxciz and W € Re*Fxkx(enteiz) The element of W at
(p, s,t,q) is:

W(p s t q) — Wh71(p757taQ)7 q < Ci1, (5)
y Syl W}hz(pvsvt,Q*Cﬂ), otherwise.

Likewise, the concatenation of the convolution kernels in the vertical direction (i.e., output-dimension concatenation) is

defined as W = [” v,1:| , where ”71;,1 € Rt ><k><k><c,;, VVU,Z € Reo2XkxkXci gnd W € R(cortcoz) xkxkXci The element of
”v,2 | m
W at (p,t,s,q) is:
W 7t S ) < Co1,
(p,t,s,q) = Vo1(pst,8,q) p 01. ©
Wyo(p — co1,t,8,q), otherwise.

The multiplication of the convolution kernels is defined as: W5 = W, x Wy, where W, € Re1xkixkaxea 1y, ¢
Rezxksxkaxes 17, ¢ Revx(kitks—1)x(katka—1)xes and ky, ko, kg and ky are all odd numbers. The element of W3 at

(p, s, t,q) is:

co—1 my

W p,S t q Z Z Z Wl(p77777—7£) X W2(£»3—77,t—T7Q)> (7)

(=0 n=—m1 T=—m2

where m; = L%J for ¢+ = 1,2. The multiplication of the convolution kernel and bias is defined as b, = W x by, where
W € Reoxkaixkaxei b c R and by € R%. The element of by at (p) is

c;i—1

Z Z Z Wp77777-€ ><bl(f) (8)

=0 n=—m1 T=—m2



The convolution kernel multiplication satisfies:
W1®(W2®$+b2)+b1:(wlXW2)®£L’+((W1Xb2)+b1), (9)

which can be proved with the help of Eq. (2). The transformation process of the reparameterization technique can be described
by Eq. (9), and the corresponding codes are provided in the supplementary material.

Moreover, the block multiplication of the convolution kernels has the same properties as the block multiplication of the
matrices.

A.2. Kernel Properties

For the kernel properties in the Method section, we have the following properties:
- Property 1 Forany x € RO*"¥% gnd I € ROF>XWX¢ we have I ® © = «,
- Property 2 For any Wy € Reoxkxkxeir T, e Reoxkxkxecir g5 ¢ Reaxhxw gug y € Re2XhxXw o haye

(W, W] ® [ﬂ =W @z+We®y,

- Property 3 For any W, € Reorxkxkxei i, ¢ Reoaxkxkxci g c ReXhXw 4o haye [Wl} Rz = [

Wi®x
Wy

Wo@x|
- Property 4 Forany W € Re*kxkxci e have I x W = W.
In the following, we give proofs of the correctness of these four properties.
Correctness of Property 1. Let z = I ® x, m = |k/2], then the element of z at (p, s, ) is

c—=1 m m
z(p,s,t) = Z Z I(p,n,1,0) x x(l;s+n,t+ 1)

(=0n=—mT1=—m
c—1 m m

= Z Z Xxm=1=0xz(l,s+nt+7)
=0 k}lf m k)z—fm

= a(p,s,t)

where [expr] is 1 when expr is true, and O otherwise. O

Correctness of Property 2. Let W = [Wy,W,], z = [ﬂ T =WiQux, §g=W®yand 2 = W ® z where

W e Rcoxkxkx(c“—&-ciz)’ z € R(c“—i-ciz)xhxw’ = Rcoxhxw’ g c Rcoxhxw, = Rcoxhxw and m = I_k/QJ Then the
element of 2 at (p, s, ) is:

cittci2—1 m m

Z Z Z W(p,n,7,0) x z({,s+n,t+T)

n=—mT=—m

2(p, s,t)

cii—l m m
= Z Z Z Wi(p,n,7,01) X x(l1,s +n,t+7)
l1=0 n=—m T=—m

cig—1

+ Z Z Z Wa(p,n,7,02) X y(la,s +n,t+7)

lo=0 n=—m T=—m

= a(p,s,t) +9(p,s,t)

O

g ®x, where W € R(Cortcoz) xkxkxei
W2 9’ 9’ 9’

2 € Rcolxhxw’ 29 € Rcothxw, = R(Co1+co2)><h><w and m = UC/QJ

Correctness of Property 3. Let W = [ 21 = WiQx, 20 = Wo®ux, 2 = [Wl

Wy



When 0 < p < ¢, , the element of z at (p, s, t) is:

z(p,s,t) = >y

z(p,s,t) =

(=0 n=—mT1t=—m

- ZQ(p_Colvsat)

W(p,n,7,€) x x(l,s +n,t +7)

Wi(p,n,7,0) x x(€, s +n,t +7)

Correctness of Property 4. Let W = I x W, m; = L%J fori = 1,2, then the element of W at (p,s,t,q) is:

co—1 my

W(p,s,t,q) = Z Z Z I(p,n,7,0) x W({l,s —n,t —T,q)

(=0 n=—m1 T=—m2

co—1 my

=0 n=—m1 T=—m2

W(p,s,t,q)

S5 Y =m0k =g < W(ls— .t —7q)

d

Remark 1 The kernels in step 4 of main paper are [I v ] and diag(W, repeat(1,n)), and the biases are 0 and {8] respec-

tively. Using Eq. (9) and Property 4, the merging process is as follows:

I ® ([Ig mpea?u’n)] ®z+ [SD +0

= ([1,1] x [Ig repea?(Ln)]) @+ ([I,I] x [

= [W,repeat(I,n)] ® z +b

] )

so the two convolutions are merged into one convolution, whose kernel is [W, repeat (I, n)] and bias is b.



B. More Qualitative Comparison

This section provides more qualitative comparisons. Different models in the same column have similar inference latencies.

Bicubic FSRCNN ECBSR-M4C32 ECBSR-M6C40
26.34/0.6101 27.23/0.7158 28.59/0.7914 29.19/0.8169

ESPCN ECBSR-M4C16 ~ ABPN-M4C28 ABPN-M6C40
27.30/0.7071 27.48/0.7223 28.80/0.7991 28.91/0.8286

ETDS-T ETDS-S ETDS-M ETDS-L
119082 from B100 27.52/0.7278 28.17/0.7644 28.77/0.8028 29.55/0.8375

Figure 1. The window edges of images generated by ETDS-L are sharper. Zooming for details.

Bicubic FSRCNN ECBSR-M4C32  ECBSR-M6C40
25.92/0.6627 26.39/0.7084 27.09/0.7377 27.90/0.7669

ESPCN ECBSR-M4C16 ~ ABPN-M4C28 ABPN-M6C40
26.36/0.6956 26.59/0.7105 26.98/0.7460 27.86/0.7744

ETDS-T ETDS-S ETDS-M ETDS-L
img_003 from Urban100 26.63/0.7149 26.83/0.7308 27.36/0.7578 28.31/0.7873

Figure 2. In the images generated by ETDS-L, the stripes on the wall are much clearer. Zooming for details.



- - - o
Bicubic FSRCNN ECBSR-M4C32 ECBSR-M6C40
17.14/0.6116 19.30/0.7567 19.73/0.7825 20.49/0.8126

- -— - L |
ESPCN ECBSR-M4C16  ABPN-M4C28 ABPN-M6C40
18.81/0.7247 19.11/0.7519 20.06/0.7920 20.52/0.8088

ETDS-T ETDS-S ETDS-M ETDS-L
img_047 from Urban100 19.25/0.7579 19.65/0.7752 19.99/0.7921 21.00/0.8149
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Figure 3. The images generated by ETDS-L have the fewest artifacts. Zooming for details.

P PP P

Bicubic FSRCNN ECBSR-M4C32 ECBSR-M6C40
14.80/0.5174 20.81/0.8099 22.01/0.8090 24.75/0.8443

Pn'Pni P

ESPCN ECBSR-M4C16 ~ ABPN-M4C28 ABPN-M6C40
20.62/0.8374 20.07/0.7807 22.88/0.8303 24.44/0.8486

PP P

ETDS-T ETDS-S ETDS-M ETDS-L
ppt3 from Set14 18.84/0.6960 21.44/0.8168 23.70/0.8652 26.14/0.8897
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Figure 4. In the images generated by ETDS-L, the edges of the letters are sharper and the area between letter P and letter O has fewer
artifacts. Zooming for details.



C. Supplementary Comparison of Ablation Experiments for Equivalent Transformation

Table 1. Statistics of model parameters, MACs, and latency of ECBSR and ABPN with and without ET on X2, x3 and x4 tasks. Better
results are marked in bold.

Latency (ms)

Scale Model Params (K) | MACs (G) —pt T Android NNAPI | MediaTek Neuron
ECBSR-M4C16 11.55 2.64 208 6.15 457
ECBSR+ET-M4C16 17.47 4.00 197 5.51 3.31
ECBSR-MA4C32 41.52 9.53 344 9.70 6.64
ECBSR+ET-M4C32 52.04 11.94 354 8.67 5.54
. ECBSR-M6C40 92.37 21.22 617 8.1 10.9
ECBSR+ET-M6C40 |  111.27 25.56 597 17 9.96
ABPN-M4C28 33.46 7.67 185 10.0 6.66
ABPN+ET-M4C28 44.41 10.19 182 8.6 5.27
ABPN-M6C40 93.40 21.45 356 18.7 1.2
ABPN+ET-M6C40 114.29 26.25 339 17.2 9.89
ECBSR-MA4C16 13.72 314 225 162 11.0
ECBSR+ET-M4C16 21.02 4.81 215 9.35 6.14
ECBSR-M4C32 45.85 10.52 356 9.7 3.1
ECBSR+ET-M4C32 57.90 13.29 354 13.1 8.34
3 ECBSR-M6C40 97.79 22.46 652 28.1 17.4
ECBSR+ET-M6C40 | 118.28 27.17 621 21.5 12.9
ABPN-M4C28 42.54 9.76 233 205 3.8
ABPN+ET-M4C28 54.96 12,61 188 13.7 8.57
ABPN-M6C40 104.10 23.91 378 292 82
ABPN+ET-M6C40 126.35 29.02 373 22.4 13.5
ECBSR-MA4C16 16.77 3.83 277 23.9 13.7
ECBSR+ET-M4C16 26.18 5.99 202 117 7.79
ECBSR-M4C32 51.92 11.91 381 28.0 163
ECBSR+ET-M4C32 65.94 15.13 360 15.7 10.3
o ECBSR-M6C40 105.37 2420 663 36.8 20.7
ECBSR+ET-M6C40 |  127.76 29.34 627 23.5 14.5
ABPN-M4C28 62.05 14.24 288 30.3 174
ABPN+ET-M4C28 77.78 17.85 263 17.8 11.4
ABPN-M6C40 125.87 2891 429 39.1 224
ABPN+ET-M6C40 151.55 34.81 392 26.6 16.1




Table 2. Statistics of model parameters, MACs, and inference latency of our ETDS with and without ET on x 2, x3 and x4 tasks. Inference
latency is tested on Dimensity 8100C SoC. Better results are marked in bold.

Latency (ms)
Scale Model Params (K) | MACs (G) CPU Android NNAPI | MediaTek Neuron
INT8 | FP32 | INT8 FP32 INTS FP32
ETDS-T (w/o ET) 12.11 2.75 268 460 10.2 176 6.87 174
ETDS-T 13.94 3.19 106 187 4.85 40.1 3.81 38.1
ETDS-S (w/o ET) 38.35 8.77 329 601 13.7 247 9.35 245
<9 ETDS-S 41.51 9.52 112 391 8.06 62.2 5.77 61.0
ETDS-M (w/o ET) 55.34 12.65 438 816 16.9 342 12.2 340
ETDS-M 60.01 13.77 161 511 10.2 83.6 6.73 82.5
ETDS-L (w/o ET) 143.85 32.98 673 1394 | 30.3 599 18.4 596
ETDS-L 152.18 34.97 342 | 1003 | 20.6 175 12.1 175
ETDS-T (w/o ET) 14.30 3.25 298 482 19.6 210 14.2 203
ETDS-T 16.92 3.86 97.9 204 8.64 63.8 5.36 574
ETDS-S (w/o ET) 42.70 9.76 351 626 22.8 290 16.6 284
3 ETDS-S 46.79 10.73 114 390 12.2 86.8 7.73 81.3
ETDS-M (w/o ET) 59.69 13.65 462 841 26.3 385 19.3 379
ETDS-M 65.29 14.98 164 514 14.4 86.5 8.76 83
ETDS-L (w/o ET) 150.36 34.47 711 1441 | 39.6 642 25.9 635
ETDS-L 159.77 36.71 377 989 254 202 14.2 195
ETDS-T (w/o ET) 17.37 3.94 333 508 19.2 253 124 243
ETDS-T 21.36 4.88 116 235 10.9 67.5 6.94 59.1
ETDS-S (w/o ET) 48.79 11.16 372 665 22.8 324 16.0 314
4 ETDS-S 54.11 12.41 125 413 14.6 90.7 9.02 83.2
ETDS-M (w/o ET) 65.78 15.04 490 882 26.7 419 17.9 408
ETDS-M 72.61 16.66 175 558 16.6 112 9.98 104
ETDS-L (w/o ET) 159.47 36.56 737 1487 | 39.9 677 24.0 667
ETDS-L 169.97 39.05 373 | 1069 | 27.6 205 15.3 198

Tab. 1 and Tab. 2 show that once ABPN, ECBSR and ETDS are equipped with ET, the inference latency decreases. Also,
it is observed that the inference latency is lower when the scale factor is larger. The possible reason is that with the increase
of scale factor, the amount of data transferred by the global residual connection increases, which enlarges the burden on the
IO bandwidth and RAM. To this end, tasks of larger scale factors enjoy more benefits of ET.



D. More details about channel mask experiments
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Figure 5. Channel masking experiments for all layers of ETDS.

The high-frequency component of an image is the one where the intensity values change quickly from one pixel to the
adjacent ones. On the other hand, the low-frequency counterpart is relatively uniform in brightness or where intensity varies
very slowly. Low-frequency components provide the basic information of an image, whose absence causes a significant
decrease in image quality. Fig. 5 shows that there is a severe decrease when channels 29, 30 and 31 are masked, which means
the low-frequency components are extracted by the last three channels (i.e., residual branch) of each layer, which is consistent
with our design goals.



