
A. Operation Descriptions
A.1. Definitions

A convolution operation is formulated as
z = W ⊗ x+ b, (1)

where x ∈ Rci×h×w and z ∈ Rco×h×w are the input and output tensors, respectively, W ∈ Rco×k×k×ci and b ∈ Rco are the
kernel and the bias of the convolution, and k is the kernel size, which is an odd number, ci, co are the numbers of the input
and output channels, and h,w are the input height and width. The element of z at (p, s, t) is:

z(p, s, t) = b(p) +

ci−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W (p, η, τ, ℓ)× x(ℓ, s+ η, t+ τ). (2)

where m = ⌊k/2⌋. For convenience, except for the middle two dimensions of the convolution kernel, all indices start from
0. The index range of the two dimensions in the middle of the convolution kernel is [−m,m]. If either s+ η or t+ τ is out
of index range, x(ℓ, s+ η, t+ τ) is 0.

I is the identity kernel of the convolution operation with:

I(p, s, t, q) =

{
1, p = q and s = t = 0,

0, otherwise.
(3)

We define the concatenation of the feature vectors in the channel dimension as z =

[
x
y

]
, where x ∈ Rc1×h×w, y ∈

Rc2×h×w, and z ∈ R(c1+c2)×h×w. The element of z at (p, s, t) is:

z(p, s, t) =

{
x(p, s, t), p < c1,

y(p− c1, s, t), otherwise.
(4)

The concatenation of the convolution kernels in the horizontal direction (i.e., input-dimension concatenation) is defined as
W =

[
Wh,1,Wh,2

]
, where Wh,1 ∈ Rco×k×k×ci1 , Wh,2 ∈ Rco×k×k×ci2 and W ∈ Rco×k×k×(ci1+ci2). The element of W at

(p, s, t, q) is:

W (p, s, t, q) =

{
Wh,1(p, s, t, q), q < ci1,

Wh,2(p, s, t, q − ci1), otherwise.
(5)

Likewise, the concatenation of the convolution kernels in the vertical direction (i.e., output-dimension concatenation) is

defined as W =

[
Wv,1

Wv,2

]
, where Wv,1 ∈ Rco1×k×k×ci , Wv,2 ∈ Rco2×k×k×ci and W ∈ R(co1+co2)×k×k×ci . The element of

W at (p, t, s, q) is:

W (p, t, s, q) =

{
Wv,1(p, t, s, q), p < co1,

Wv,2(p− co1, t, s, q), otherwise.
(6)

The multiplication of the convolution kernels is defined as: W3 = W1 × W2, where W1 ∈ Rc1×k1×k2×c2 , W2 ∈
Rc2×k3×k4×c3 , W3 ∈ Rc1×(k1+k3−1)×(k2+k4−1)×c3 , and k1, k2, k3 and k4 are all odd numbers. The element of W3 at
(p, s, t, q) is:

W3(p, s, t, q) =

c2−1∑
ℓ=0

m1∑
η=−m1

m2∑
τ=−m2

W1(p, η, τ, ℓ)×W2(ℓ, s− η, t− τ, q), (7)

where mi = ⌊ki

2 ⌋ for i = 1, 2. The multiplication of the convolution kernel and bias is defined as b2 = W × b1, where
W ∈ Rco×k1×k2×ci , b1 ∈ Rci and b2 ∈ Rco . The element of b2 at (p) is:

b2(p) =

ci−1∑
ℓ=0

m1∑
η=−m1

m2∑
τ=−m2

W (p, η, τ, ℓ)× b1(ℓ). (8)



The convolution kernel multiplication satisfies:

W1 ⊗ (W2 ⊗ x+ b2) + b1 = (W1 ×W2)⊗ x+ ((W1 × b2) + b1), (9)

which can be proved with the help of Eq. (2). The transformation process of the reparameterization technique can be described
by Eq. (9), and the corresponding codes are provided in the supplementary material.

Moreover, the block multiplication of the convolution kernels has the same properties as the block multiplication of the
matrices.

A.2. Kernel Properties

For the kernel properties in the Method section, we have the following properties:
- Property 1 For any x ∈ Rc×h×w and I ∈ Rc×k×w×c, we have I ⊗ x = x,
- Property 2 For any W1 ∈ Rco×k×k×ci1 , W2 ∈ Rco×k×k×ci2 , x ∈ Rci1×h×w and y ∈ Rci2×h×w, we have[

W1,W2

]
⊗
[
x
y

]
= W1 ⊗ x+W2 ⊗ y,

- Property 3 For any W1 ∈ Rco1×k×k×ci , W2 ∈ Rco2×k×k×ci , x ∈ Rci×h×w, we have
[
W1

W2

]
⊗ x =

[
W1 ⊗ x
W2 ⊗ x

]
,

- Property 4 For any W ∈ Rco×k×k×ci , we have I ×W = W .
In the following, we give proofs of the correctness of these four properties.

Correctness of Property 1. Let z = I ⊗ x, m = ⌊k/2⌋, then the element of z at (p, s, t) is

z(p, s, t) =

c−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

I(p, η, τ, ℓ)× x(ℓ, s+ η, t+ τ)

=

c−1∑
ℓ=0

m∑
k1=−m

m∑
k2=−m

[ℓ = p]× [η = τ = 0]× x(ℓ, s+ η, t+ τ)

= x(p, s, t)

where [expr] is 1 when expr is true, and 0 otherwise. □

Correctness of Property 2. Let W =
[
W1,W2

]
, z =

[
x
y

]
, x̂ = W1 ⊗ x, ŷ = W2 ⊗ y and ẑ = W ⊗ z, where

W ∈ Rco×k×k×(ci1+ci2), z ∈ R(ci1+ci2)×h×w, x̂ ∈ Rco×h×w, ŷ ∈ Rco×h×w, ẑ ∈ Rco×h×w and m = ⌊k/2⌋. Then the
element of ẑ at (p, s, t) is:

ẑ(p, s, t) =

ci1+ci2−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W (p, η, τ, ℓ)× z(ℓ, s+ η, t+ τ)

=

ci1−1∑
ℓ1=0

m∑
η=−m

m∑
τ=−m

W1(p, η, τ, ℓ1)× x(ℓ1, s+ η, t+ τ)

+

ci2−1∑
ℓ2=0

m∑
η=−m

m∑
τ=−m

W2(p, η, τ, ℓ2)× y(ℓ2, s+ η, t+ τ)

= x̂(p, s, t) + ŷ(p, s, t)

□

Correctness of Property 3. Let W =

[
W1

W2

]
, z1 = W1⊗x, z2 = W2⊗x, z =

[
W1

W2

]
⊗x, where W ∈ R(co1+co2)×k×k×ci ,

z1 ∈ Rco1×h×w, z2 ∈ Rco2×h×w, z ∈ R(co1+co2)×h×w and m = ⌊k/2⌋.



When 0 ≤ p < co1 , the element of z at (p, s, t) is:

z(p, s, t) =

ci−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W (p, η, τ, ℓ)× x(ℓ, s+ η, t+ τ)

=

ci−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W1(p, η, τ, ℓ)× x(ℓ, s+ η, t+ τ)

= z1(p, s, t)

When co1 ≤ p < co1 + co2 , the element of z at (p, s, t) is:

z(p, s, t) =

ci−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W (p, η, τ, ℓ)× x(ℓ, s+ η, t+ τ)

=

ci−1∑
ℓ=0

m∑
η=−m

m∑
τ=−m

W2(p− co1, η, τ, ℓ)× x(ℓ, s+ η, t+ τ)

= z2(p− co1, s, t)

□
Correctness of Property 4. Let Ŵ = I ×W , mi = ⌊ki

2 ⌋ for i = 1, 2, then the element of Ŵ at (p, s, t, q) is:

Ŵ (p, s, t, q) =

co−1∑
ℓ=0

m1∑
η=−m1

m2∑
τ=−m2

I(p, η, τ, ℓ)×W (ℓ, s− η, t− τ, q)

=

co−1∑
ℓ=0

m1∑
η=−m1

m2∑
τ=−m2

([η = τ = 0]× [ℓ = p])×W (ℓ, s− η, t− τ, q)

= W (p, s, t, q)

□

Remark 1 The kernels in step 4 of main paper are
[
I, I

]
and diag(W, repeat(I, n)), and the biases are 0 and

[
b
0

]
respec-

tively. Using Eq. (9) and Property 4, the merging process is as follows:

[
I, I

]
⊗
([

W O
O repeat(I, n)

]
⊗ x+

[
b
0

])
+ 0

=

([
I, I

]
×
[
W O
O repeat(I, n)

])
⊗ x+

([
I, I

]
×

[
b
0

]
+ 0

)
=

[
W, repeat(I, n)

]
⊗ x+ b

so the two convolutions are merged into one convolution, whose kernel is
[
W, repeat(I, n)

]
and bias is b.



B. More Qualitative Comparison
This section provides more qualitative comparisons. Different models in the same column have similar inference latencies.
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Figure 1. The window edges of images generated by ETDS-L are sharper. Zooming for details.
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Figure 2. In the images generated by ETDS-L, the stripes on the wall are much clearer. Zooming for details.
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Figure 3. The images generated by ETDS-L have the fewest artifacts. Zooming for details.
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Figure 4. In the images generated by ETDS-L, the edges of the letters are sharper and the area between letter P and letter O has fewer
artifacts. Zooming for details.



C. Supplementary Comparison of Ablation Experiments for Equivalent Transformation

Table 1. Statistics of model parameters, MACs, and latency of ECBSR and ABPN with and without ET on ×2,×3 and ×4 tasks. Better
results are marked in bold.

Scale Model Params (K) MACs (G) Latency (ms)
CPU Android NNAPI MediaTek Neuron

×2

ECBSR-M4C16 11.55 2.64 208 6.15 4.57
ECBSR+ET-M4C16 17.47 4.00 197 5.51 3.31

ECBSR-M4C32 41.52 9.53 344 9.70 6.64
ECBSR+ET-M4C32 52.04 11.94 354 8.67 5.54

ECBSR-M6C40 92.37 21.22 617 18.1 10.9
ECBSR+ET-M6C40 111.27 25.56 597 17 9.96

ABPN-M4C28 33.46 7.67 185 10.0 6.66
ABPN+ET-M4C28 44.41 10.19 182 8.6 5.27

ABPN-M6C40 93.40 21.45 356 18.7 11.2
ABPN+ET-M6C40 114.29 26.25 339 17.2 9.89

×3

ECBSR-M4C16 13.72 3.14 225 16.2 11.0
ECBSR+ET-M4C16 21.02 4.81 215 9.35 6.14

ECBSR-M4C32 45.85 10.52 356 19.7 13.1
ECBSR+ET-M4C32 57.90 13.29 354 13.1 8.34

ECBSR-M6C40 97.79 22.46 652 28.1 17.4
ECBSR+ET-M6C40 118.28 27.17 621 21.5 12.9

ABPN-M4C28 42.54 9.76 233 20.5 13.8
ABPN+ET-M4C28 54.96 12.61 188 13.7 8.57

ABPN-M6C40 104.10 23.91 378 29.2 18.2
ABPN+ET-M6C40 126.35 29.02 373 22.4 13.5

×4

ECBSR-M4C16 16.77 3.83 277 23.9 13.7
ECBSR+ET-M4C16 26.18 5.99 202 11.7 7.79

ECBSR-M4C32 51.92 11.91 381 28.0 16.3
ECBSR+ET-M4C32 65.94 15.13 360 15.7 10.3

ECBSR-M6C40 105.37 24.20 663 36.8 20.7
ECBSR+ET-M6C40 127.76 29.34 627 23.5 14.5

ABPN-M4C28 62.05 14.24 288 30.3 17.4
ABPN+ET-M4C28 77.78 17.85 263 17.8 11.4

ABPN-M6C40 125.87 28.91 429 39.1 22.4
ABPN+ET-M6C40 151.55 34.81 392 26.6 16.1



Table 2. Statistics of model parameters, MACs, and inference latency of our ETDS with and without ET on ×2,×3 and ×4 tasks. Inference
latency is tested on Dimensity 8100C SoC. Better results are marked in bold.

Scale Model Params (K) MACs (G)
Latency (ms)

CPU Android NNAPI MediaTek Neuron
INT8 FP32 INT8 FP32 INT8 FP32

×2

ETDS-T (w/o ET) 12.11 2.75 268 460 10.2 176 6.87 174
ETDS-T 13.94 3.19 106 187 4.85 40.1 3.81 38.1

ETDS-S (w/o ET) 38.35 8.77 329 601 13.7 247 9.35 245
ETDS-S 41.51 9.52 112 391 8.06 62.2 5.77 61.0

ETDS-M (w/o ET) 55.34 12.65 438 816 16.9 342 12.2 340
ETDS-M 60.01 13.77 161 511 10.2 83.6 6.73 82.5

ETDS-L (w/o ET) 143.85 32.98 673 1394 30.3 599 18.4 596
ETDS-L 152.18 34.97 342 1003 20.6 175 12.1 175

×3

ETDS-T (w/o ET) 14.30 3.25 298 482 19.6 210 14.2 203
ETDS-T 16.92 3.86 97.9 204 8.64 63.8 5.36 57.4

ETDS-S (w/o ET) 42.70 9.76 351 626 22.8 290 16.6 284
ETDS-S 46.79 10.73 114 390 12.2 86.8 7.73 81.3

ETDS-M (w/o ET) 59.69 13.65 462 841 26.3 385 19.3 379
ETDS-M 65.29 14.98 164 514 14.4 86.5 8.76 83

ETDS-L (w/o ET) 150.36 34.47 711 1441 39.6 642 25.9 635
ETDS-L 159.77 36.71 377 989 25.4 202 14.2 195

×4

ETDS-T (w/o ET) 17.37 3.94 333 508 19.2 253 12.4 243
ETDS-T 21.36 4.88 116 235 10.9 67.5 6.94 59.1

ETDS-S (w/o ET) 48.79 11.16 372 665 22.8 324 16.0 314
ETDS-S 54.11 12.41 125 413 14.6 90.7 9.02 83.2

ETDS-M (w/o ET) 65.78 15.04 490 882 26.7 419 17.9 408
ETDS-M 72.61 16.66 175 558 16.6 112 9.98 104

ETDS-L (w/o ET) 159.47 36.56 737 1487 39.9 677 24.0 667
ETDS-L 169.97 39.05 373 1069 27.6 205 15.3 198

Tab. 1 and Tab. 2 show that once ABPN, ECBSR and ETDS are equipped with ET, the inference latency decreases. Also,
it is observed that the inference latency is lower when the scale factor is larger. The possible reason is that with the increase
of scale factor, the amount of data transferred by the global residual connection increases, which enlarges the burden on the
IO bandwidth and RAM. To this end, tasks of larger scale factors enjoy more benefits of ET.



D. More details about channel mask experiments
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Figure 5. Channel masking experiments for all layers of ETDS.

The high-frequency component of an image is the one where the intensity values change quickly from one pixel to the
adjacent ones. On the other hand, the low-frequency counterpart is relatively uniform in brightness or where intensity varies
very slowly. Low-frequency components provide the basic information of an image, whose absence causes a significant
decrease in image quality. Fig. 5 shows that there is a severe decrease when channels 29, 30 and 31 are masked, which means
the low-frequency components are extracted by the last three channels (i.e., residual branch) of each layer, which is consistent
with our design goals.


