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1. Datasets Details

We used five datasets in our experiments, namely DRAC
[1], DeepDR [2], EYEQ [3], CT-IQAD [4, 5], and CXR-
IQAD [6, 7], for five different diagnosis tasks. As previ-
ously mentioned, Table 1 in the main section shows the la-
bel distribution for each dataset. Here, we provide more
details on each dataset and our experimental settings.

DRAC. DRAC is a public competition in the Grand
Challenge, which consists of 997 ultra-wide Optical Co-
herence Tomography Angiography (OCTA) images for dia-
betic retinopathy (DR) diagnosis. Ultra-wide OCTA images
can provide more information than normal OCTA images
and can demonstrate retina features in great detail. How-
ever, these images usually suffer from image quality prob-
lems, such as low-signal and segment artifacts, due to pa-
tients’ movement and environmental conditions. Medical
experts can evaluate DR grade by visually inspecting le-
sions in the foveal avascular zone and vascular structure.
In this dataset, DR is graded into three levels, representing
no diabetic retinopathy (NoDR), non-proliferative diabetic
retinopathy (NPDR), and proliferative diabetic retinopathy
(PDR), respectively. The quality of each image is evaluated
separately, and the quality annotation is a binary label with
high-quality (HQ) or low-quality (LQ), where LQ images
have obvious artifacts. The original setting of this dataset
divides it into training and testing sets with 611 and 386
images, respectively, and we follow this setting in our ex-
periments.

DeepDR. DeepDR provides fundus images from more
than 1000 patients for DR grading with different quality
levels. Fundus imaging is a standard screening tool for DR
diagnosis. Unlike other datasets, DeepDR provides dual-
view fundus images from the same eyes with different ar-
eas in the center. The images in the dataset are evaluated
and graded into five levels based on DR lesions. To align
with the DRAC dataset, we reorganized the annotations of
DeepDR to include three levels: no DR, NPDR, and PDR.
Similar to OCTA, fundus images also contain artifacts, and
HQ or LQ labels are provided to indicate image quality lev-
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els. This dataset comprises a total of 2000 images, and we
followed their original data splits, i.e., 1200 training images,
400 validation images, and 400 testing images.

EyeQ. EYEQ is a dataset that has been re-annotated
from the EyePACS dataset. The EyePACS dataset origi-
nally assessed retinal image quality with a binary annota-
tion basis, but EYEQ selected 28,792 retinal fundus im-
ages and re-annotated them into three levels for good, us-
able, or poor quality. Images in this dataset are graded into
five levels of diabetic retinopathy (DR) according to sever-
ity. Similar to the DeepDR dataset, we combined the sec-
ond, third, and fourth levels into the non-proliferative di-
abetic retinopathy (NPDR) class, while the first and fifth
level images are regarded as no DR and proliferative dia-
betic retinopathy (PDR), respectively. Among the images,
we used 17,274 images for training, 2,881 images for vali-
dation, and 8,637 images for testing.

CT-IQAD. Our CT-IQAD dataset is composed of 746
computed tomography (CT) images from COVID-X [5]
and 2600 from SARS [4]. These datasets were originally
collected to evaluate whether patients are infected with
COVID-19, and the images are annotated as normal for non-
infection and COVID-19 for infected cases. However, due
to the nature of COVID-X images being collected in the
wild, such as those downloaded from papers, their quality
cannot be guaranteed, while SARS collects data from hospi-
tal patients with relatively higher quality. Thus, we labeled
the images in COVID-X as LQ and those in SARS as HQ.
The CT-IQAD dataset is divided into 1641 training images,
235 validation images, and 470 test images.

CXR-IQAD. It consists of chest X-ray (CXR) images
from two different sources: [6] for child images and [7] for
adult images. All images are labeled as either Normal or
Pneumonia. To simulate low-dose CXR images [8], we
downsampled 2928 images from [6] and all images from
[7] using a bicubic kernel, which are considered LQ. The
dataset is divided into three subsets: child images (HQ),
low-dose child images (LQ-C), and low-dose adult images
(LQ-A). We split the dataset into 5780 training images, 825
validation images, and 1651 test images.



2. Implementation Details
We conducted our experiments using the Pytorch frame-

work and ran them on a GeForce RTX™ 3090 GPU. All im-
ages were resized to 256×256 and normalized to zero mean
and unit variance in intensity values, individually for each
dataset, before being divided into batches. The batch size
was chosen adaptively to account for differences between
image modalities. We used VGG16 as the backbone, along
with focal loss and entropy loss for both the Task Net and
Meta Learner. We also utilized SGD as the optimizer, with
Task Net’s learning rate α and weight decay strategy kept
constant at 0.01 and 0.0005, respectively, for all datasets.
Moreover, the Meta Learner’s learning rate β was chosen
based on the specific dataset being used. To balance the
effectiveness of Task Net and Meta Learner, we applied dif-
ferent weights to the entropy loss for each dataset. We tuned
the length of yω individually for each dataset to improve
performance. A summary of the training parameters used
for each dataset is provided below.

DRAC. The number of training epochs is set as 200, and
we report the last epoch result because the official data split
does not have a validation set. The learning rates for task
net and meta learner are both 0.01. The batch size is 8, and
the weight of entropy loss is 0.5, and the length of yω is 7.

DeepDR. We set the number of training epochs is set as
200 and validate the model per 20 epochs to select the best
model and evaluate it on the test set. The learning rates for
task net and meta learner are 0.01 and 0.001, respectively.
The batch size is 4, and the weight of entropy loss is 0.3,
and the length of yω is 10.

EyeQ. We train the model for 100 epochs and validate
the model per 10 epochs to select the best model. The learn-
ing rates for task net and meta learner are 0.01 and 0.001,
respectively. The batch size is 4, and the weight of entropy
loss is 0.2, and the length of yω is 5.

CT-IQAD. Similar to DeepDR, the number of training
epochs is 200, and the validation is made per 20 epochs.
The learning rates for task net and meta learner are both
0.01. The batch size is 4, and the weight of entropy loss is
0.2, and the length of yω is 5.

CXR-IQAD. The number of training epochs is also 200
and validation interval is 20 epochs. The learning rates for
task net and meta learner are 0.01 and 0.001, respectively.
The batch size is 8, and the weight of entropy loss is 0.3,
and the length of yω is 7.

We took into consideration the unique characteristics of
each dataset when selecting training parameters. For in-
stance, we maintained the Meta Learner learning rate at
0.001 across all datasets except for DRAC and CT-IQAD,
where the number and proportion of LQ images are lower
than other datasets, and thus set the Meta Learner learning
rate to 0.01. We also adjusted the batch size based on the
nature of the images in each dataset. OCTA images contain

clear lesion information compared to fundus images, which
led us to set the batch size to 8 for DRAC and 4 for DeepDR
and EYEQ. Additionally, since LQ images in CXR-IQAD
are simulated and those degradations appear similar, com-
pared to CT-IQAD, we set their batch sizes to 8 and 4, re-
spectively. To adapt to different datasets, we applied dif-
ferent weights to the entropy loss. For small datasets like
DRAC, we set a higher entropy loss weight of 0.5 to provide
more encouragement to Meta Learner to generate appropri-
ate yω . For larger datasets like EYEQ and CXR-IQAD, we
set the weight to 0.2. Finally, for other datasets, we set the
weight to 0.3.

3. Comparison Details

Ophthalmic disease assessment. MMCNN [9] employs
a multi-cell architecture that performs regression and clas-
sification jointly. BIRA-Net [10] uses a two-stream CNN
architecture with an attention module and bi-linear strategy.
GREEN [11] utilizes a graph convolutional network with a
class dependency prior for disease diagnosis tasks. CAB-
Net [12] learns discriminative features for each disease cat-
egory using a categorical attention block.

Multi-task & auxiliary learning. QGNet [13] uses
image quality assessment as an auxiliary branch of the
model supervised by center loss and weighted softmax loss.
CANet [14] explicitly explores the internal relationship be-
tween diseases via attention-based modules. Multitask-
Net [15] takes advantage of specific task layers to conduct
multi-lesion diagnosis. MTMR-Net [16] proposes a mar-
gin ranking loss and explicitly leverages the relationship
between regression and classification for disease diagno-
sis. MAXL [17] employs meta-auxiliary learning for self-
supervision in primary tasks. DETACH [18] proposes a
dual-stream disentangled learning architecture on the task
level to explore potential relationships among diseases.

Other adaptable methods. Mixup [19] is a classic aug-
mentation method that mixes images to improve robustness.
Mixstyle [20] conducts the mixing of feature statistics of
training samples across domains to improve model robust-
ness. Augmix [21] is a simple data processing technique
that generates augmented images automatically to improve
model performance on unseen domains. DDAIG [22] uses
adversarial training to generate perturbed images to im-
prove generalization ability.

4. Class Activation Map Visualization

In this paper, we use class activation mappings (CAMs)
to perform a qualitative analysis of how MKCNet works. As
shown in Figure 1, we present additional samples of OCTA
images from DRAC and fundus images from DeepDR and
EyeQ. In the DRAC dataset, both Vanilla and MKCNet ex-
hibit desired attention on the high-quality image. However,
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Vanilla is susceptible to misleading signs caused by image
degradations, whereas MKCNet is more robust in handling
such degradations. In contrast with OCTA images, Vanilla
may disregard vascular structures or lesions that are rele-
vant for diagnosing optic disc conditions in fundus images.
Additionally, as shown in the last row, Vanilla may be eas-
ily distracted by large black areas around fundus images,
whereas MKCNet focuses on anatomical structures or le-
sions instead of artifacts. Overall, MKCNet performs well
in evaluating both OCTA and fundus images.
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Figure 1. Qualitative analysis via CAM visualization on DRAC, EyeQ, and DeepDR.
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