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1. Training Details

We use DF2K (DIV2K+Flicker2K) with 3450 images as
the training dataset when training from scratch. The low-
resolution images are generated from the ground truth im-
ages by the “bicubic” down-sampling in MATLAB. We set
the input patch size to 64 × 64 and use random rotation
and horizontally flipping for data augmentation. The mini-
batch size is set to 32 and total training iterations are set to
500K. The learning rate is initialized as 2e-4 and reduced
by half at [250K,400K,450K,475K]. For ×4 SR, we initial-
ize the model with pre-trained ×2 SR weights and halve
the iterations for each learning rate decay as well as to-
tal iterations. We adopt Adam optimizer with β1 = 0.9
and β2 = 0.99 to train the model. For the same-task pre-
training, the full ImageNet dataset with 1.28 million im-
ages is first exploited to pre-train the model for 800K itera-
tions. The initial learning rate is also set to 2e-4 but reduced
by half at [300K,500K,650K,700K,750k]. Then, we adopt
DF2K dataset to fine-tune the pre-trained model. For fine-
tuning, we set the initial learning rate to 1e-5 and halve it at
[125K,200K,230K,240K] for total 250K training iterations.

2. Analysis of Model Complexity

We conduct experiments to analyze the computational
complexity of our method from three aspects: window size
for calculation of self-attention, overlapping cross-attention
block (OCAB) and channel attention block (CAB). We also
compare our method with the Transformer-based method
SwinIR. The ×4 SR performance on Urban100 are reported
and the number of Multiply-Add operations is counted at
the input size of 64 × 64. Note that pre-training techniques
(including ×2 pre-training) are NOT used for all the models
in this section. The experimental setup is completely fair.

First, we use the standard Swin Transformer block as
the backbone to explore the influence on different window

Table 1. Model complexity comparison of window sizes.

window size #Params. #Multi-Adds. PSNR
(8, 8) 11.9M 53.6G 27.45dB

(16, 16) 12.1M 63.8G 27.81dB

Table 2. Model complexity comparison of OCAB and CAB.

Method #Params. #Multi-Adds. PSNR
Baseline 12.1M 63.8G 27.81dB

w/ OCAB 13.7M 74.7G 27.91dB
w/ CAB 19.2M 92.8G 27.91dB

Ours 20.8M 103.7G 27.97dB

Table 3. Model complexity comparison of CAB sizes.

β in CAB #Params. #Multi-Adds. PSNR
1 33.2M 150.1G 27.97dB
2 22.7M 107.1G 27.92dB

3 (default) 19.2M 92.8G 27.91dB
6 15.7M 78.5G 27.88dB

w/o CAB 12.1M 63.8G 27.81dB

Table 4. Model complexity comparison of SwinIR and HAT.

Method #Params. #Multi-Adds. PSNR
SwinIR 11.9M 53.6G 27.45dB

HAT-S (ours) 9.6M 54.9G 27.80dB
SwinIR-L1 24.0M 104.4G 27.53dB
SwinIR-L2 23.1M 102.4G 27.58dB
HAT (ours) 20.8M 103.7G 27.97dB

sizes. As shown in Tab. 1, enlarging window size can bring
a large performance gain (+0.36dB) with a little increase in
parameters and ∼%19 increase in Multi-Adds.

Then, we use window size 16 as the baseline to investi-
gate the computational complexity of the proposed OCAB
and CAB. As illustrated in Tab. 2, our OCAB obtains a per-
formance gain with a limited increase of parameters and
Multi-Adds. It demonstrates that the effectiveness and effi-
ciency of the proposed OCAB. Besides, adding CAB to the
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Figure 1. Comparison of LAM results between SwinIR and HAT.

baseline model also achieves better performance.
Since CAB seems to be computationally expensive, we

further explore the influence on CAB sizes by modulating
the squeeze factor β (mentioned in Sec.3.2.2 in the main
paper). As shown in Tab. 3, adding a small CAB whose β
equals 6 can bring considerable performance improvement.
When we continuously reduce β, the performance increases
but with larger model sizes. To balance the performance and
computations, we set β to 3 as the default setting.

Furthermore, we compare HAT and SwinIR with the
similar numbers of parameters and Multi-Adds in two set-
tings, as presented in Tab. 4. 1) We compare HAT-S with
the original version of SwinIR. With less parameters and
comparable computations, HAT-S significantly outperforms
SwinIR. 2) We enlarge SwinIR by increasing the width and
depth of SwinIR to achieve similar computations as HAT,
denoted as SwinIR-L1 and SwinIR-L2. HAT achieves the
best performance at the lowest computational cost.

Overall, we find that enlarging the window size for the
calculation of self-attention is a very cost-effective way to
improve the Transformer model. Moreover, the proposed
OCAB can bring an obvious performance gain with limited

increase of computations. Although CAB is not as efficient
as above two schemes, it can also bring stable and con-
siderable performance improvement. Benefiting from the
three designs, HAT can substantially outperforms the state-
of-the-art method SwinIR with comparable computations.

3. More Visual Comparisons with LAM
We provide more visual comparisons with LAM results

to compare SwinIR and our HAT. The red points in LAM re-
sults represent the used pixels for reconstructing the patch
marked with a red box in the HR image, and Diffusion In-
dex (DI) is computed to reflect the range of involved pixels.
The more pixels are utilized to recover the specific input
patch, the wider the distribution of red points is in LAM
and the higher DI is. As shown in Fig. 1, the LAM attri-
bution of HAT expands to the almost full image, while that
of SwinIR only gathers in a limited range. For the quan-
titative metric, HAT also obtains a much higher DI value
than SwinIR. All these results demonstrate that our method
activates more pixels to reconstruct the low-resolution in-
put image. As a result, SR results generated by our method
have higher PSNR/SSIM and better visual quality.
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