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Overview
In this supplementary material, we provide additional

details which we could not include in the main paper due
to space limitations. We first performed some additional
experiments on the CMOS model to further prove the ef-
fectiveness of it. Then we conducted more ablation studies
for the module GIA and provided more discussions. Fi-
nally, we presented additional visual comparison results on
the proposed datasets (NYUv2-BSR and Cityscapes-BSR),
as well as on several real-world images.

A. Additional Experiments on CMOS
Impact of Other Degradations. Traditional degradation
model [3, 9] is usually used to synthesize the LR input for
SR as:

y = [(x
⊗

k) ↓s +n]JPEG. (1)

It assumes that the LR image y is obtained by first convolv-
ing the HR image x with a blur kernel k, followed by a
downsampling operation with scale factor s and an addition
of noise n. JPEG compression is also adopted here, as it is
widely-used in real-world images. Our proposed datasets,
i.e., NYUv2-BSR and Cityscapes-BSR, are also designed
based on the traditional model. We extended the blur ker-
nels to space-variant domains, but do not consider noise and
JPEG compression in our settings.

Therefore, in order to explore the performance of the
proposed CMOS under more severe image degradations, we
add additive Gaussian noise and JPEG compression to the
NYUv2-BSR dataset and retrained the model. In the test-
ing phase, the covariance σ of the additive Gaussian noise
is set to 5, 10 and 15, respectively. The quality factor q of
JPEG compression is set to 70 and 50. As shown in Tab. 1,
CMOS can maintain its good performance when the noise

*Equal contribution.
†Corresponding author.

σ q PSNR ↑ SSIM ↑ mIoU ↑

5 ✗ 22.07 0.8157 32.32
10 ✗ 21.56 0.8101 30.70
15 ✗ 20.42 0.8025 28.70
✗ 70 21.39 0.8110 30.92
✗ 50 20.52 0.8021 29.12
5 70 20.92 0.8044 29.63

10 70 20.72 0.8042 28.61
15 70 19.94 0.7977 26.51
✗ ✗ 24.52 0.8340 35.61

Table 1. Impacts of additive Gaussian noise and JPEG compres-
sion on the blur estimation and semantic segmentation perfor-
mance of CMOS. σ is the covariance of the additive Gaussian
noise and q is the quality factor q of JPEG compression.

or JPEG compression is not too severe. However, when the
images suffer from both degradations, or when one of the
degradations is too severe, it will not perform well. This
indicates that while the proposed CMOS can be directly ap-
plied in scenarios with relatively mild noise or other forms
of distortion, designing specialized estimation or recovery
methods for other degradations, apart from blurring, is nec-
essary when the degradations are more severe and diverse.

Space-variant vs. Space-invariant. To further demon-
strate that CMOS can handle different blur types, we
present the results of different methods on space-invariant
and space-variant blur respectively. The space-invariant re-
sults represent the average PSNR and SSIM values for the
space-invariant blurred images within each test group, while
the space-variant results correspond to the average values
for the space-variant ones within each test group.

As shown in the Tab. 2 and Tab. 3, although the previous
advanced SR methods which only focus on space-invariant
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Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [2] 23.22/23.08 24.19/22.86 23.27/23.15 23.45/23.08 23.35/23.14 23.39/23.06
KOALAnet [6] 27.64/27.70 28.58/27.52 27.93/27.52 29.25/27.35 29.87/27.20 28.65/27.46
DCLS [11] 28.16/27.82 29.14/27.64 28.67/27.60 30.14/27.35 31.04/27.08 29.43/27.50
DAN [5] 32.86/26.67 32.73/26.80 32.90/26.57 33.53/26.52 32.50/26.69 32.90/26.65
MANet [8] 29.83/30.24 30.91/30.03 30.09/30.06 30.92/29.86 31.42/29.76 30.63/29.99
CMOS (ours) 31.68/32.19 32.99/31.85 31.69/32.07 32.58/31.80 32.83/31.80 32.35/31.94
Upper Bound 33.31/33.92 34.79/33.53 32.97/33.87 33.76/33.72 33.75/33.74 33.72/33.76

Table 2. Average PSNR of different methods for Space-invariant/Space-variant blind SR on NYUv2-BSR. Avg. represents the average
results on the 5 test groups. The best and second best results are highlighted in red and blue colors, respectively.

Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [2] 0.7508/0.7410 0.7812/0.7346 0.7454/0.7448 0.7537/0.7427 0.7426/0.7470 0.7547/0.7420
KOALAnet [6] 0.8722/0.8786 0.8896/0.8736 0.8702/0.8741 0.8862/0.8727 0.8940/0.8714 0.8824/0.8741
DCLS [11] 0.8795/0.8800 0.8975/0.8754 0.8833/0.8741 0.8940/0.8725 0.9098/0.8699 0.8928/0.8744
DAN [5] 0.9214/0.8709 0.9232/0.8703 0.9225/0.8658 0.9242/0.8659 0.9175/0.8696 0.9218/0.8685
MANet [8] 0.9095/0.9122 0.9216/0.9085 0.9037/0.9110 0.9116/0.9095 0.9176/0.9089 0.9128/0.9100
CMOS (ours) 0.9143/0.9174 0.9254/0.9135 0.9079/0.9161 0.9154/0.9146 0.9205/0.9140 0.9167/0.9151
Upper Bound 0.9283/0.9316 0.9377/0.9285 0.9190/0.9315 0.9266/0.9309 0.9283/0.9302 0.9280/0.9305

Table 3. Average SSIM of different methods for Space-invariant/Space-variant blind SR on NYUv2-BSR. Avg. represents the average
results on the 5 test groups. The best and second best results are highlighted in red and blue colors, respectively.

Metrics MANet [8] DCLS [11] Ours

PSNR ↑ 30.97 32.04 31.99
SSIM ↑ 0.8650 0.8907 0.8971

Table 4. Experiments on the benchmark evaluation dataset
BSD100 [12]. The SR scale factor is set to 2.

blur, i.e., KernelGAN [2], DCLS [11] and DAN [5], can
deal with the situation of space-invariant blur well, the
restoration performance of space-variant blur is poor. DAN,
in particular, has an average gap of 6.25 dB and 0.0533
in PSNR and SSIM. By contrast, the performance of
SR methods aiming to solve space-variant problems, i.e.,
KOALAnet [6] and MANet [8], is similar in both cases.
Notably, the proposed method CMOS can achieve the best
results in space-variant blur, and also maintains its perfor-
mance in space-invariant blur.
Perceptual-based Metric. To further prove the advantage
of our method, we report a perceptual-based metric Learned
Perceptual Image Patch Similarity (LPIPS) [15], which pro-
vides a perceptual distance between the SR image and the
ground-truth. The lower the value of this metric, the higher
the perceived quality of the restored image. As shown

Methods Avg. PSNR ↑ Avg. SSIM ↑

Real-ESRGAN [13] 27.61 0.8825
BSRGAN [14] 29.38 0.8977
SwinIR [7] 29.42 0.9042
CMOS (ours) 32.03 0.9154

Table 5. Comparisons with three implicit modeling methods. We
fine-tune the models on the NYUv2-BSR dataset.

in Tab. 6, the proposed model CMOS produces the best re-
sults compared to other methods, which is consistent with
the visualization results in the qualitative comparisons.

Other Comparision methods. There are two mainstreams
of research on blind image SR, namely explicit modeling
methods [2,5,8], and implicit modeling methods [7,13,14].
The explicit modeling methods first extract the blur kernels
from the LR images and then use them to synthesize HR
images from the LR images, while the implicit modeling
methods restores HR images directly from the LR images
without kernel estimation. Although our approach follows
the first line of research, we also compare other three im-
plicit modeling approaches, i.e., Real-ESRGAN [13], BSR-



Method Group1 Group2 Group3 Group4 Group5 Avg.

KernelGAN [2] 0.2826 0.2820 0.2843 0.2799 0.2813 0.2820
KOALAnet [6] 0.2211 0.2227 0.2263 0.2232 0.2231 0.2233
DCLS [11] 0.2366 0.2361 0.2429 0.2423 0.2416 0.2399
DAN [5] 0.2407 0.2399 0.2468 0.2463 0.2457 0.2439
MANet [8] 0.1455 0.1458 0.1483 0.1468 0.1466 0.1466
CMOS (ours) 0.1313 0.1314 0.1337 0.1329 0.1329 0.1324

Table 6. A perceptual-based metric LPIPS [15] of different methods for space-variant blind SR on NYUv2-BSR. Avg. represents the
average results on the 5 test groups. The best and second best results are highlighted in red and blue colors, respectively.

Window Size PSNR ↑ SSIM ↑ mIoU ↑

5× 5 24.08 0.8333 35.60
5× 10 24.11 0.8332 35.54
15× 15 24.13 0.8325 35.39
15× 20 (ours) 24.52 0.8340 35.61

Table 7. Influence of different window sizes in the spatial grouping
feature interaction part of the proposed module GIA.

GAN [14] and SwinIR [7]. We fine-tune them on the
NYUv2-BSR dataset and the average results of the five test
groups are reported in Tab. 5. Note that for RRDBNet in
Real-ESRGAN, we use the same hyperparameters as our
method to ensure a fair comparison.
Other Datasets. To fully illustrate the effectiveness of our
method, we carried out additional experiments on a bench-
mark evaluation dataset BSD100 [12]. Since the window
size in our default model setting is 15×20, the SR scale fac-
tor is set to 2 in this experiment. We use the isotropic gaus-
sian kernels to blur the images and the kenel sizes are fixed
to 21 × 21. The kernel width of the train set is uniformly
sampled from range [0.2, 2.0], and we fine-tune our model
trained on the Cityscapes-BSR on it. For testing, we use the
Gaussian8 [4, 11] kernel setting to generate the evaluation
dataset and the results are shown in Tab. 4. Although the
semantic information in the BSD100 does not quite agree
with that in the Cityscapes-BSR, CMOS still achieves com-
parable results to the SOTA method DCLS [11], e.g. similar
PSNR and better SSIM by +0.0064↑.

B. Ablation Studies of GIA

Impact of Different Window Sizes in GIA. In the spatial
grouping feature interaction part of GIA, we first divide the
feature maps into windows of size H × W , and then car-
ried out subsequent operations for each window. The win-
dows are set to 15× 20 in our default settings, which is the
resolution of the minimum feature maps in the hierarchical

Layers PSNR ↑ SSIM ↑ mIoU ↑

2 23.98 0.8326 35.45
4 24.03 0.8322 35.38
6 23.37 0.8275 35.40
1 (ours) 24.52 0.8340 35.61

Table 8. Influence of different number of layers in the spatial
grouping feature interaction part of the proposed module GIA.

structure of CMOS. We also tried other windows of differ-
ent sizes, and the results are shown in Tab. 7. For blur esti-
mation, the larger the window is, the better the performance
is. With the increase of the window size, PSNR increases
from 24.08 to 24.52 dB. Although this is not the case with
SSIM, the best result is also achieved when the window size
is 15×20. For semantic segmentation, the window size does
not seem to matter much and similar results are obtained for
all four sizes of windows.
Impact of Different Layers in GIA. Since the features
only interact in windows in the spatial grouping feature in-
teraction part of GIA and the global information may be in-
sufficient, we also tried the shifted window scheme in [10]
and applied more layers. The window size is set to 15× 20.
In even layers, the shift size is set to 0, and in odd layers,
the shift size is set to half of the window size. As shown
in Tab. 8, the shifted window scheme seems not work for
GIA and more layers are not beneficial for the results of
both blur estimation and semantic segmentation. This may
be because the channel grouping feature interaction part of
GIA is already sufficient to capture global information, so
the spatial part only needs to focus on local information and
the global information here may diminish the emphasis on
local details.

C. More Discussions

While intentional defocus can be used for artistic effect,
it can be frustrating and unnecessary in certain applications.



Ours (MANet) Test-NYU Test-City

Train-NYU 32.0/0.9154 (30.1/0.9106) 32.5/0.9199 (27.7/0.8314)
Train-City 27.3/0.8844 (20.2/0.7104) 35.6/0.9383 (34.3/0.9287)

Table 9. Generalization property of the model CMOS. NYU refers
to the NYUv2-BSR dataset, while City refers to the Cityscapes-
BSR dataset.

As is commonly known, using a wide aperture results in a
shallow depth of field, causing defocus in the images. How-
ever, there are many real-life examples that require a wide
aperture but still want all-in-focus images. An example is
the cameras on the self-driving cars, or on cars that map en-
vironments, where it uses a fixed shutter speed and the only
way to get sufficient light is a wide aperture at the cost of
defocus [1]. Therefore, it is very promising to explore the
removal of the defocus blur in the SR field.

In order to better eliminate the defocus blur and re-
store more accurate image details, we designed a seman-
tically relevant model called CMOS and treated the in-
door and outdoor scenes differently. We compared our
model with MANet cross datasets to evaluate its generaliza-
tion performance using the PSNR/SSIM metrics, as shown
in Tab. 9. The results demonstrate that our method outper-
forms MANet in terms of generalization.

D. More Qualitative Comparisons

In this section, we present more qualitative comparisons
and compare our method against several state-of-the-art SR
methods [2,5,6,8,11]. Specifically, we show visual compar-
isons of various methods on the proposed datasets NYUv2-
BSR and Cityscapes-BSR for 4× SR in Fig. 1 and Fig. 2,
respectively. It is worth noting that the last rows are two
examples of space-invariant blurred images. Furthermore,
we also demonstrate several applications of processing real-
world images. In these cases, the ground-truth images are
not available. As shown in Fig. 3, CMOS can reconstruct
sharper and more accurate images than the state-of-the-art
SR approaches.
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The whole image (LR) LR KernelGAN DAN DCLS KOALAnet MANet Ours GT

Figure 1. Qualitative comparisons between different SR methods on space-variant (out-of-focus) and space-invariant blur. The last row is
an example of space-invariant blur, and the rest are examples of space-variant blur. The images are from the proposed dataset NYUv2-BSR.
(Please zoom in for better view.)



The whole image (LR) LR KernelGAN DAN DCLS KOALAnet MANet Ours GT

Figure 2. Qualitative comparisons between different SR methods on space-variant (out-of-focus) and space-invariant blur. The last row is
an example of space-invariant blur, and the rest are examples of space-variant blur. The images are from the proposed dataset Cityscapes-
BSR. (Please zoom in for better view.)



The whole image (LR) LR KernelGAN DAN DCLS KOALAnet MANet Ours

Figure 3. Visual results on real-world images for scale factor 4. The first three images of the indoor scene use the models trained on
NYUv2-BSR, and the last three images of the outdoor scene use the models trained on Cityscapes-BSR. (Please zoom in for better view.)
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