
Appendix

We provide in this supplementary more ablation studies,
method analysis, and additional visualizations that could not fit
in the paper. In particular, we include (1) the accuracy of various
place recognition algorithms, (2) analysis of the computation time
of our method and all baselines, (3) more visualizations including
heat map and clearer mapping result, (4) and (5) video visualiza-
tions of trajectory estimation throughout the training processes.

A. Robustness on map topology

As mentioned in Sec. 3.2, the map topology used for organizing
training batches can be obtained by any off-the-shelf algorithms.
All results reported in Sec. 4 are based on TF-VPR [44], which is
a self-supervised place recognition algorithm. In this supplemen-
tary, we compare the mapping accuracy of DeepMapping2 when
different approaches are used to provide map topology.

We compute the map topology from a pre-trained Point-
NetVLAD [41] model and GPS. The mapping results are shown in
Tab. I. For drive 0018, there is no significant difference between
the mapping results from TF-VPR and PointNetVLAD. Also, us-
ing GPS provides a marginally better mapping result, but this is
expected given that GPS is used as the ground truth. Due to
PointNetVLAD’s low-quality map topology, PointNetVLAD for
drive 0027 does not produce a good mapping result. In summary,
our method is robust regardless of the map topology used, as
long as it is relatively accurate to reflect the adjacency relation-
ships in the environment.
Table I. Robustness on map topology. The table lists the mapping
result of DeepMapping2 when running with the map topology at-
tained by different place recognition methods. GPS theoretically
provides the most ideal map topology.

PR algo.
Drive 0018 Drive 0027

T-ATE (m)# R-ATE (
�
)# T-ATE (m)# R-ATE (

�
)#

TF-VPR [44] 1.81 0.72 2.29 1.57
PointNetVLAD [41] 1.82 0.80 4.79 7.80
GPS (ground truth) 1.62 0.62 2.07 1.42

B. Time analysis

Table II. Computation time of different methods. The three
baseline methods are run on CPU. DM2 is run on RTX3090 GPU.
Note that there is no NVLink when 2 GPUs are used.

Method
Time consumption (s)

Drive 0018 Drive 0027

Multiway [38] 113 141
DGR [28] (on CPU) 70200 108522
LeGO-LOAM [15] 287 470

DM2 (1 GPU) 21600 29900
DM2 (2 GPUs) 12085 18587

We compare the computation time of different methods on two
trajectories from the KITTI [29] dataset. Due to the nature of
training-as-optimization, as we mentioned in Sec. 5, our method
takes longer to compute than some of the baselines. When we ap-
ply DeepMapping2 to larger datasets, we can apply parallel train-

ing to reduce computation time. In Tab. II, it shows that if two
GPUs are used for training, the training time is almost decreased
by half. It is worth noting that our hardware has no NVLink, which
is frequently used in distributed multi-GPU systems to speed up
data transmission among GPUs. As a result, the theory and the ac-
tual scalability should be very similar. When given sufficient com-
putational resources, the time needed by our method can be signif-
icantly reduced, i.e., the time required is expected to be inversely

proportional to the number of GPUs used. Thus, DeepMapping2
should support a multi-agent setup where the point clouds are
scanned by multiple agents and do not have a sequential order.

C. More experiments

We conduct more tests on the simulated dataset [1]. The origi-
nal DeepMapping pipeline fails on the large-scale dataset, because
the drift cannot be correct as described in Sec. 3.1. DeepMapping2
successfully estimates multiple trajectories with different numbers
of frames on the simulated point dataset as visualized in Fig. V

We also conduct more experiments on other KITTI se-
quences [29]. The detailed result is shown in Tab. III.

Table III. Additional results on the KITTI dataset.

More sequence
Sequence 02 Sequence 08

T-ATE (m)# R-ATE (
�

)# T-ATE (m)# R-ATE (
�

)#

Incremental ICP 8.06 4.57 4.38 4.46
Multiway Registration 4.96 3.37 2.40 0.90

ICP+DM2 2.56 1.31 1.85 0.81

Figure I. Original DeepMapping results on simulated point

cloud dataset. The black line represents the trajectory, while the
color block represents the occupancy grid.

D. More visualization

In order to clearly demonstrate the optimization capability of
DeepMapping2, we also offer heat map visualization. Results
from drive 0018, drive 0027, and NCLT are included. It
can be shown from Figs. II and III that DeepMapping2 gener-
ally has smaller errors compared to other methods. Also, Fig. IV
demonstrates how DeepMapping2 improves map from LeGO-
LOAM, particularly for the areas indicated by the red box.

We also include a larger and clearer visualization in Fig. VI for
the mapping result on the NeBula dataset. It is clear that kinematic
odometry fails to align the same locations when they are visited at
different times, particularly at two ends of the map. On the other
hand, DeepMapping2 significantly improves the map’s quality.



Figure II. KITTI drive 0018. Heat map visualization of both translation and rotation ATE for each frame in the dataset. Note that the
color bar is clipped for better visualization. Best viewed in color.

Figure III. KITTI drive 0027. Heat map visualization.



 

Figure IV. NCLT. Heat map visualization. The red boxes highlights the regions where DM2 improves over LeGO-LOAM.

(a) Scene1 (1024 frames) (b) Scene2 (1024 frames) (c) Scene3 (1024 frames) (d) Scene4 (2048 frames)

Figure V. Mapping and trajectory plot on Simulated point cloud dataset [1] We include five mapping results including (a)(b)(c)
DeepMapping2 mapping results on three different trajectories with 1024 frames (d) DeepMapping2 mapping results on a trajectory with
2048 frames.



(a) Kinematic odometry (KO) (b) KO+DeepMapping2

Figure VI. Mapping result on NeBula. The color of point indicates the frame index in the trajectory.


