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In Sec. 1, we introduce the detailed human-body part
labels for human-object contact. In Sec. 2, we describe more
details for the annotation protocol for “HOT-Annotated” and
how we generate pseudo ground truth for “HOT-Generated”.
In Sec. 3, we report more implementation details. Sec. 4
shows more experimental results in the contact detection task,
including failure cases, evaluation under different settings
and attention maps, etc. In Sec. 5, we provide more details
of the part-specific contact detector that we compare with
HOT. In Sec. 6, we report more experiment details and
results to illustrate the use of our HOT contact detection for
3D human pose estimation. Sec. 7 includes more details on
how the HOT dataset can facilitate 3D contact estimation.
Section 8 discusses more potential downstream applications
for contact detection and qualitative results on self-contact
and human-human contact. The use of existing assets is
listed in Sec. 9.

1. Human Part Labels
For the contact estimation task, we want to know if con-

tact takes place in the image, the area in which it takes place,
as well as the body part that is involved.

To get the human part labels, we divide the parametric
human body model, SMPL-X [7] into 17 parts, i.e.: Head,
Chest, L UpperArm, L ForeArm, L Hand, R UpperArm,
R ForeArm, R Hand, Buttocks, Hip, Back, L Thigh, L Calf,
L Foot, R Thigh, R Calf and R Foot. This is based on the
original part segmentation of SMPL-X, but for simplicity we
unite certain parts (e.g., parts of the back across the spine),
that even human annotators cannot easily differentiate. Fig-
ure S.1 shows the color-coded body parts, together with part
labels, on the SMPL-X mesh.

2. Dataset Details
2.1. Contact Annotation for “HOT-Annotated”

We hire professional annotators to annotate the contact
information for the in-the-wild images. The annotation
pipeline is similar to semantic segmentation annotation but
with different task requirements. In this section, we describe
the instructions given to the annotators in detail.
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Figure S.1. The color-coded human parts with labels.

The overall annotation process includes two steps: (1)
“segmenting” the image area for human-object contacts, and
(2) assigning the human part label associated with the contact.
In the first step, the annotators are asked to hallucinate the
contact area in an image and draw a tight polygon around it.
In the second step, the annotators pick a label for the contact
area out of our pre-defined 17 human parts.

Determining the exact contact area between a human and
an object is non-trivial, especially in the image space. Thus,
we first perform a round of trial annotations, in which we
test our annotation protocol, as well as train our annotators.
We provide the following instructions to annotators:

– Contact areas between humans and objects are always
occluded. Annotators should hallucinate the contact
area in 3D, and then annotate its projection on the 2D
image.

– A polygon annotation should cover only the subset of
the human part that is in contact, and not the whole part.
Note that this is different from part segmentation.

– There may be multiple contact areas between a single
human and a single object.

– Only humans in the foreground should be considered;
any humans in the background should be ignored.

– Contact areas that are occluded by another human or
object should be ignored.

– Contact for body parts with extreme out-of-frame crop-
ping, e.g., when only a hand is visible, should be ig-
nored.
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Figure S.2. Illustration of computing the properties involved in the
contact annotation between the body mesh Mb and scene mesh
Ms for “HOT-Generated”.

– Human-human and self contact should be ignored.
After a full annotation round, we have two rounds of quality
checks. In more detail, for every 3 annotators, there is 1 extra
annotator that only conducts quality checks. The quality
check verifies if the annotated polygon matches the contact
area, if the contact label corresponds to the correct body part,
if there are missing contact annotations (false negatives), if
there are false positive contact annotations and if contact
annotations are consistent across images.

2.2. Contact Generation for “HOT-Generated”

The PROX dataset [3] captures human subjects interact-
ing with static scenes. Briefly, we use the reconstructed 3D
human and scene meshes to first compute the human vertices
that are in close 3D proximity to scene ones, and consider
the former as contact vertices. We then render the respective
triangles onto the 2D image to get automatic contact area
annotations, as well as the associated body labels.

More specifically, the human pose and shape is repre-
sented with the SMPL-X body model with pose parameters,
θ, and shape parameters, β. The 3D human mesh is denoted
as Mb ∈ R10475×3. Each vertex, vi ∈ R3, has a surface
normal nv

i and an associated human part label ci. For each
frame, given the estimated SMPL-X mesh, Mb, and the
scene mesh, Ms, we first calculate the distance {di}10475i=1

from all human vertices {vi}10475i=1 to the scene mesh Ms.
For each vertex vi, we also find the closest triangle in Ms,
denoted as ti, with surface normal nt

i.
Then, a human vertex, vi, is considered in contact if its

distance to the scene, di, is below a threshold, and the surface
normal, nv

i , is in the opposite direction to the scene normal,
nt
i. Specifically, both of the following two constraints should

be satisfied:
– Distance constraint: di ≤ δd, where the distance

threshold δd is set to be 0.07m empirically;
– Surface normal compatibility: Angle(nv

i , n
t
i) ≥ δa,

where the δa = 110◦ is an angle threshold.
Figure S.2 demonstrates the criteria mentioned above.

Finally, for the contact vertices we find the respective

triangles on the 3D body mesh, and render them separately
per body part to get dense 2D contact areas. In this way, we
automatically create pseudo ground truth for contact.

2.3. Annotation repeatability in “HOT-Annotated”

Annotating contact from images is a very challenging task.
To verify the repeatability of the manual annotation, two new
trained persons are hired to annotate 200 random images
from “HOT-Annotated”. We compare the labels to the ones
collected by the annotators of Sec. 2.1. The agreement for
body-part contact labels is 93.2%, and the agreement for
pixel contact labels is 77.1%; this is comparable to the 82.4%
agreement of the semantic-segmentation pixel annotations
of ADE20K [14] in their experiment for consistency check
across annotators.

2.4. Dataset Statistics by Splits

Current Human-Object Interaction (HOI) datasets have
many walking, standing-up, or sitting-down poses (foot con-
tact) or grasping poses (hand contact); this naturally biases
the data distributions as shown in the main paper. Randomly
spliting data into training, validation and testing sets natu-
rally captures such biases, but the statistics are similar across
these sets as can be seen from Figs. S.3 and S.4.
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Figure S.3. Distribution of body-part labels for contact in “HOT-
Annotated”; number of contact areas (Y-axis) for a certain body
part (X-axis) in different data splits.
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Figure S.4. Distribution of body-part labels for contact in “HOT-
Generated”; number of contact areas (Y-axis) for a certain body
part (X-axis) in different data splits.

3. Implementation Details

During training, the loss weight for the attention branch
λa is set to be 0.1 for the first 10 epochs and 0 for the rest of
the epochs. The loss weight λc for contact estimation is set to
be 1. We use a pre-trained dilated ResNet-50 [12] as image
encoder backbone. For the attention branch we use 3 × 3
convolutional layers with batch-norm and ReLU as image
decoder, followed by another convolutional layer with kernel
size 1 to make pixel-wise human part label classification. For
the contact branch, we apply 3× 3 convolutional layers with
batch-norm and ReLU on the part-specific features, which
we further concatenate along the channel axis. The weights
of convolutional layers are different across human parts, so
that the contact branch learns part-specific features under the
attention guidance. Another convolutional layer with kernel
size 1 is used to make pixel-wise contact label prediction.
Since the background dominates the label ground truth for
both human-part segmentation and contact estimation, we
assign a smaller weight 0.02 for the background label and
1 for the rest of the labels in the cross-entropy loss. We
re-scale all images to have their longer side 400 pixels long,
and then pad, if necessary. Random flipping is applied for
data augmentation. We train the model for 20 epochs on 4
NVIDIA-A100 GPUs with a batch size of 24. We use the
SGD [9] optimizer, with an initial learning rate of 0.02 with

polynomial decay following Zhou et al. [14].
We also report the model size for fair performance com-

parison during the experiments. Our model has a total of 50.2
million trainable parameters, whereas ResNet+PPM [13]
has 46.7 million and ResNet+UperNet [11] has 64.2 million.

4. More Contact Detection Results
4.1. Failure Cases

Figure S.5 shows some examples of failure cases. We
see that our model might struggle with occlusions, multi-
ple persons or fine-grained contact areas. We also observe
that the model sometimes fails in distinguishing left and
right for the body parts. These point out that contact detec-
tion may benefit from future work on adding human pose
information, multi-resolution reasoning and differentiating
human-object contact with self-contact and person-person
contact, but these are currently out of our scope.

Input GT Prediction
Figure S.5. Representative failure cases for our contact detector.

4.2. Model Performance under Various Settings

To better diagnose the model’s performance under differ-
ent settings, we conduct the following two experiments.

1) The contact detection for different body parts. Quanti-
tative results are shown in Tab. S.1. We can see that our
methods performs better on the body parts with more data,
e.g., hand, foot and butt, and fails in the body parts that
naturally have less contact, e.g., hip and calf. This shows
the importance of data balance when developing a general
purpose contact detector.
2) We also evaluate the model’s performance with various
contact area sizes, i.e., small, medium and large. The size
thresholds are 0.052% and 0.22% based on the size distribu-
tion, which can be seen in the main paper. The quantitative



body part Head Chest Back L UpperArm L ForeArm L Hand R UpperArm R ForeArm R Hand Butt Hip L Thigh L Calf L Foot R Thigh R Calf R Foot Mean

SC-Acc. ↑ 54.9 27.4 62.0 29.3 11.4 43.1 5.07 2.86 69.5 57.0 3.77 12.0 20.3 47.5 11.3 7.95 36.4 40.7
mIoU ↑ 0.532 0.252 0.558 0.199 0.092 0.215 0.047 0.026 0.430 0.374 0.034 0.173 0.138 0.334 0.090 0.070 0.262 0.260

Table S.1. Contact estimation performance by different body parts on “HOT-Annotated”.

Figure S.6. Attention maps for “Ourspure att”, visualized separately per body part.

results in Tab. S.2 show our model has decent performance
on contacts with medium and large sizes, but cannot distin-
guish fine-grained contact with small areas. This indicates
that contact detection will benefit from multi-resolution rea-
soning for different types of human-object contact.

Contact area Sc-Acc.↑ mIoU↑ wIoU↑

small 21.6 0.020 0.025
medium 39.7 0.253 0.301
large 53.4 0.381 0.494

all 40.7 0.215 0.260

Table S.2. Contact estimation performance by contact area sizes on
“HOT-Annotated”.

4.3. Attention without Human Part Supervision

Figure S.6 shows the learned attention maps for
“Ourspure att”. In this setting, no supervision is applied for
the attention branch, which functions as an unsupervised
pure soft-attention module. In contrast to “OursFull” where
the attention focuses on areas around each human part (see
Fig. 5 in the main paper), for “Ourspure att” certain parts (e.g.,
the “Back” in this case) attend to the full body, while others
can get distracted by the background.

5. Part-Specific Contact Detectors

5.1. Foot-Contact Detector

“ContactDynamics” [8] is a physics-based trajectory opti-
mization method that generates physically-plausible motions.
To this end, an intermediate step detects contact for the toe
and heel joints of each foot. The authors use MoCap se-
quences to generate ground-truth contact for training such

a detector using heuristics. The contact detector is a multi-
layer perceptron (MLP) that takes as input lower-body 2D
joints in a temporal window, and outputs four contact labels
(left/right toe, left/right heel) for the central frames.

For evaluation on PROX’s test set (aka “quantitative set”),
we use OpenPose [1] to generate 2D keypoints and feed
these into the pre-trained foot contact model. For a fair
comparison with our HOT contact detector, we consider a
foot to be in contact when at least one joint (either toe or
heel) is in contact. Our detector achieves similar perfor-
mance (HOT 59.2% vs ContactDynamics [8] 58.6%); see
the related discussion in Sec. 5.2 (i) of the main paper.

5.2. Hand-Contact Detector

“ContactHands” [6] detects hands as bounding boxes
and classifies their contact state as “self-contact”, “person-
person”, or “person-object” (hand-object) contact. Here we
only consider the hands with hand-object contact label in the
model output.

During evaluation, a detected hand-object contact from
“ContactHands” is considered as a true positive if the hand
bounding box and the ground-truth hand contact area over-
lap. For HOT, we consider our predicted hand contact area
as a true positive if the Intersection-over-Union (IoU) with
the ground-truth hand contact area is larger than 0.4. Ex-
perimental results show that our detector achieves similar
performance (HOT 63.5% vs ContactHands [6] 62.2%); see
the related discussion in Sec. 5.2 (ii) of the main paper.

6. HOT for 3D HPS Estimation
In the main paper, we replace the heuristic contact in

PROX [3] with our contact detection when estimating 3D
humans from a color image. This tests the usefulness of our
contact estimates for human pose estimation. In Tab. S.3 we



Figure S.7. Example downstream applications of contact detection.

report the full-performance comparison on PROX’s “quanti-
tative set”; “All Contact” considers all body vertices to be
in contact.

Importantly, note that V2V is the most appropriate “pose”
metric for surface contact, as vertices lie on surfaces that
come in contact with objects. V2V numbers in Tab. S.3 show
that detecting contact in images is promising and can be used
to replace PROX’s hand-crafted contact heuristics.

The rest of the metrics do not capture contact; they are
reported for completeness. Procrustes (Pr.) factors out
global translation and rotation to focus only on articulation;
“pr.PJE” and “pr.V2V” are irrelevant for contact. Skeleton
joints (PJE) lie under the surface of the body.

Method PJE ↓ pr.PJE ↓ V2V ↓ pr.V2V ↓
No Contact 180.2 74.0 183.3 65.2
PROX [3] 170.9 72.3 174.0 63.4
All Contact 175.4 73.4 176.3 64.0
Predicted Contact 171.3 73.6 172.3 64.9

GT Contact 161.9 71.8 163.0 63.3

Table S.3. Contact-driven human pose and shape (HPS) estimation
– results on PROX’s “quantitative set”. “Predicted Contact” refers
to the contact label predicted by our HOT contact detector and “GT
Contact” is the ground-truth contact label. “PROX” refers to use
of PROX’s manually annotated contact vertices. “PJE” refers to
the Per-Joint Error, “pr” is Procrustes alignment, and “V2V” is the
Vertex-to-Vertex error.

7. HOT for 3D Contact Estimation
In the main paper, we show that our HOT dataset facili-

tates dense 3D contact estimation on the human body from
an image [4], by helping such models generalize better to
in-the-wild images. Below we report how we generate the
pseudo ground-truth for 3D contact using 2D HOT annota-
tions, and discuss more experimental details.
Pseudo ground-truth generation: For “HOT-Annotated”,
we annotate (see Sec. 2.1) contact areas as 2D polygons in
images and the body part that is involved in contact (see part
segmentation in Sec. 1). For the annotated body part, for
this experiment we consider all its vertices (see Fig. S.1)
as contact vertices. The only exception is the hands and

feet; we only consider the vertices on the inner palm and
the sole of foot to capture the most common contact in daily
life. The above results in a coarse pseudo ground-truth 3D
contact map on the human body; for examples see Fig. S.8.
We denote the pseudo ground-truth 3D contact for “HOT-
Annotated” as “HOT-pGT”.

Image F-V B-V Image F-V B-V

Figure S.8. Examples of the pseudo ground-truth 3D contact gen-
erated from “HOT-Annotated”, i.e., HOT-pGT. F-V represents
front-view and B-V represents back-view.

Figure S.9. Qualitative results of testing our model on self-contact
and human-human contact.

Experimental details: The recent RICH dataset and BSTRO
model [4] focus on dense 3D contact estimation on the hu-
man body from an image. To show the usefulness of our
HOT dataset for this task, we employ the BSTRO model
and extend its training dataset RICH with HOT-pGT. When



training on RICH and HOT-pGT, we combine all the images
from the training set of RICH and HOT, following their orig-
inal training/validation/testing split. For faster convergence,
we use the pre-trained model of BSTRO and fine-tune on
the combination of RICH and HOT-pGT for 20 epochs. The
learning rate is set to be 0.0001 and the the batch size is set
to be 32. The rest of the network architecture and hyperpa-
rameters are the same as original BSTRO training [4]. We
compare with the original BSTRO model, which is trained
only on RICH. Each model is evaluated on the test set with
the best performer from the validation set.

8. Contact Detection Applications
Contact detection is important for applications in many

domains such as AR/VR, activity recognition, affordance
detection, fine-grained human-object interaction detection
(beyond bounding boxes), 3D human pose estimation and
populating scenes with interacting avatars. Here we show-
case several examples in Fig. S.7. For instance, one pos-
sible future direction is to extend the triplet definition of
HOI <human/action/object> by adding contact as <human-
part/contact-area/object>, which supports finer-grained HOI
reasoning. Another application is detecting in videos the
areas that people contact, and guiding human cleaners (AR)
or robots with heatmaps for sanitization or contamination
prevention.

We also test our human-object detector on images with
self-contact and human-human contact; see some qualitative
results in Fig. S.9. Although our model was not designed
for such interaction scenarios, sometimes it can produce
meaningful results, and sometimes it expectedly fails; this
is a challenging and open problem. How to effectively com-
bine different contacts and build a general-purpose contact
detector would be interesting future work.

9. Use of Existing Assets
Our dataset HOT collects image data from PROX [3],

V-COCO [2], HAKE [5] and Watch-n-Patch [10]. PROX is
licensed under the terms of the Software Copyright License
for non-commercial scientific research purposes. V-COCO
is licensed under the terms of the CC-BY 4.0 License and
HAKE is licensed under the terms of the MIT License.
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