
Supplementary Materials for Elastic Aggregation for Federated Optimization

Dengsheng Chen1∗, Jie Hu2,3*, Vince Junkai Tan4, Xiaoming Wei1, Enhua Wu2,3,5†

1 Meituan 2 State Key Laboratory of Computer Science, ISCAS
3 University of Chinese Academy of Sciences 4 Bytedance Inc. 5 University of Macau

{chendengsheng,weixiaoming}@meituan.com, hujie@ios.ac.cn, vince.tan.jun.kai@gmail.com, ehwu@um.edu.mo

1. More details about parameter sensitivity
An intuitive approach to compute sensitivity Ωi for the ith parameter is using the average method over batches:

Ωi =
∑
x∈Dk

|g(θi;x)|/|Dk|, (1)

However, this average method may not be suitable for a real scenario in federated learning, for that training data may be
collected randomly. The momentum approach described in paper is more flexible for us to do an online accumulating of
parameter sensitivity. Also, we find that the momentum approach can achieve a better performance and is more robust for
different τ under different tasks compared with the average approach. We also conduct an experiment on synthetic federated
dataset of CIFAR-10. We show the inspired percentage of parameters during training in Fig. 1. It indicates that momentum
approach prefers to keep more parameters to be restricted from client drifting. However, the average approach prefers to
inspire more parameters to explore a better distribution. In federated learning, we are more eager to solve the client-drift
problem caused by non-IID-ness via restricting parameters. The final accuracy in Tab. 1 also indicates a better performance of
momentum approach.

naive elastic(average) elastic(momentum)
Train Acc(%) 55.39 55.49 58.74
Test Acc(%) 61.22 61.11 61.45

Table 1. Performance with different parameter sensitivity computation approach.

2. Data distribution
Generating synthetic federated datasets Different distribution has a very large influence on the final performance of
federated optimization. The Dirichlet distribution is used on the label ratios to ensure uneven label distributions among clients
for non-IID splits, as in [12]. This can generate nonIIDness with an unbalanced sample number on each label. The Dirichlet
distribution is a density over a K dimensional vector p whose K components are positive and sum to 1. Dirichlet can support
the probabilities of a K-way categorical event. In federated learning, we can view K clients’ sample numbers obeying the
Dirichlet distribution. You can check here1 for more details of the Dirichlet distribution. To generate unbalanced data, we
sample the number of data points from a log-normal distribution. Controlling the variance of log-normal distribution gives
unbalanced data.

We use the above-introduced approach to generate synthetic federated datasets for MNIST, CIFAR-10, and CINIC-10 in
our paper.

*Equal contribution.
†Corresponding author. This work is supported in part by NSFC Grants (62072449).
1https://en.wikipedia.org/wiki/Dirichlet_distribution

1



0 25 50 75 100 125 150 175 200
Rounds

70

72

74

76

78

80

82

84

86

In
sp

ire
d 

(%
)

Average
Momentum

Figure 1. Percentage of parameters boosted during training.

Fed-CIFAR100 The dataset is derived from the CIFAR-100 dataset2. The training and testing examples are partitioned
across 500 and 100 clients (respectively). No clients share any data samples, so it is a true partition of CIFAR-100. The train
clients have string client IDs in the range [0-499], while the test clients have string client IDs in the range [0-99]. The train
clients form a true partition of the CIFAR-100 training split, while the test clients form a true partition of the CIFAR-100
testing split. The data partitioning is done using a hierarchical Latent Dirichlet Allocation (LDA) process, referred to as the
Pachinko Allocation Method [6]. This method uses a two-stage LDA process, where each client has an associated multinomial
distribution over the coarse labels of CIFAR-100, and a coarse-to-fine label multinomial distribution for that coarse label
over the labels under that coarse label. The coarse label multinomial is drawn from a symmetric Dirichlet with parameter
0.1, and each coarse-to-fine multinomial distribution is drawn from a symmetric Dirichlet with parameter 10. Each client has
100 samples. To generate a sample for the client, we first select a coarse label by drawing from the coarse label multinomial
distribution and then draw a fine label using the coarse-to-fine multinomial distribution. We then randomly draw a sample
from CIFAR-100 with that label (without replacement). If this exhausts the set of samples with this label, we remove the label
from the coarse-to-fine multinomial and renormalize the multinomial distribution.

Fed-EMNIST This dataset is derived from the Leaf [1] repository3 pre-processing of the Extended MNIST dataset, grouping
examples by the writer. This dataset does not include some additional preprocessing that MNIST includes, such as size
normalization and centering. In the Federated EMNIST data, the value of 1.0 corresponds to the background, and 0.0
corresponds to the color of the digits themselves. It contains 3,400 users, 62 label classes, and 671,585 training examples,
77,483 testing examples. Rather than holding out specific users, each user’s examples are split across train and test so that all
users have at least one example in the train and one example in the test. Writers that had less than 2 examples are excluded
from the data set.

3. Federated optimizer with elastic aggregation
Federated Average with Momentum (FedAvgM) and Elastic Aggregation have been presented in Algorithms. 1. FedProx

with Elastic Aggregation has been presented in Algorithms. 2. FedAvgM is an enhancement of FedAvg on the server side,
and FedProx is an enhancement of FedAvg on the client side. Elastic aggregation can work well with other complementary
approaches designed for the client-side or server-side. In Fig. 2, we show the convergence speed with different optimizers.

2https://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/TalwalkarLab/leaf



Algorithm 1: FedAvg with Momentum [9] and Elastic Aggregation

A variable with a superscript i indicates the ith element of the variable. A variable with a subscript k indicates the
variable from kth client. η, η′ are learning rates of server and clients respectively. µ, µ′, τ are the hyper-parameters.
θ, θk ∈ Rn are the server’s and the kth client’s parameters respectively. Ω ∈ Rn is the aggregated parameter
sensitivity. Ωk ∈ Rn is the parameter sensitivity on the kth client. m ∈ Rn is the momentum vector.

Initialize θ
Initialize m← 0
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωi
k ← µΩi

k + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇ℓk(F (θk;x))

∆k = θk − θ

wk ← |Dk|/
∑

k |Dk|; Ω =
∑

k(wk · Ωk); Ω′ = max(Ω)
for i ∈ [1, · · · , n] do

ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑

k(wk ·∆i
k)

mi ← µ′mi + (1− µ′)∆i

θi ← θi − η ·mi
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Figure 2. Elastic aggregation can be easily integrated with different federated optimizers, achieving performance improvements.



Algorithm 2: FedProx [5] with Elastic Aggregation

A variable with a superscript i indicates the ith element of the variable. A variable with a subscript k indicates the
variable from kth client. η, η′ are learning rates of server and clients respectively. µ, τ are the hyper-parameters. ρ is
penalty coefficient of FedProx. θ, θk ∈ Rn are the server’s and the kth client’s parameters respectively. Ω ∈ Rn is the
aggregated parameter sensitivity. Ωk ∈ Rn is the parameter sensitivity on the kth client.

Initialize θ
Bk ← Sample a subset of training data Dk.
Dk ← Drop the samples of Bk from Dk.
for each round do

for each activated client k do
Initialize Ωk as zeros.
for each batch data x ∈ Bk do

g = ∇||F (θ;x)||22
for i ∈ [1, · · · , n] do

Ωi
k ← µΩi

k + (1− µ)|gi|

θk ← θ
for each epoch do

for each batch data x ∈ Dk do
θk ← θk − η′∇ℓk(F (θk;x)) + ρ(θ − θk)

∆k = θk − θ

wk ← |Dk|/
∑

k |Dk|; Ω =
∑

k(wk · Ωk); Ω′ = max(Ω)
for i ∈ [1, · · · , n] do

ζi = 1 + τ − Ωi/Ω′

∆i = ζi ·
∑

k(wk ·∆i
k)

θi ← θi − η ·∆i

4. The computational overhead of parameter sensitivity
This computational overhead can be neglectable in terms of total computational cost in the training phase. Moreover,

parameter sensitivity is not required in the inference phase.
In a training task, the parameter sensitivity is only calculated once for each round. Suppose that each round contains e

epochs, and several backward perform on a small fraction µ of training instances, which is enough to precisely estimate the
parameter sensitivity. Thus, the additional computational cost can be roughly given by µ

2×e . Empirically, we set µ = 10% and
e = 10. The extra cost only takes 0.5% against the total training cost.

5. Communication overhead
As for the communication budget, we introduce no overhead for downloading the global model but require an extra

communication overhead for uploading the parameter sensitivities. And this overhead seems inevitable. Such as the well-
known related method mentioned in Table 5, the SCAFFOLD2019 [3] also introduces such communication overhead. We
list the additional communication overhead using FedAvg [7] as baseline in Tab. 2 (downloading parameters notes as 1x and
uploading parameters also notes as 1x, so the FedAvg is 2x in total):

FedAvg FedAvgM FedProx SCAFFOLD AdaOpt PFNM Ours
2x 2x 2x 4x 2x 2x 3x

Table 2. Communication overhead.



Pros Cons

FedAvg Efficient, Robust
Slow convergence,
Limited upper performance

FedProx [5]
Fast convergence,
Better performance

Light extra overhead

SCAFFOLD [3] Fast convergence Not robust

AdaOpt [9]
Fast convergence,
Excellent performance

Considerable extra overhead

PFNM [12]
Alleviate client drift,
Excellent performance,
Fast convergence

Complex implementation,
Considerable extra overhead

Ours

Alleviate client drift,
Excellent performance,
Robust,
Fast convergence

Light extra overhead

Table 3. Compare to prior works in pros/cons.

6. Compare to prior works in pros/cons
Here we list the pros/cons of several related works in Tab. 3. From the table, our proposed Elastic Aggregation basically

incorporates the advantages of other methods without any defect except a light extra computational overhead.

7. Technicalities
We formalize the problem as minimizing a sum of stochastic functions like [3], with only access to stochastic samples:

min
x∈Rd
{f(x) := 1

N

N∑
i=1

(fi(x) := Eζi [fi(x; ζi)])}. (2)

The functions fi represents the loss function on client i. All our results can be easily extended to the weighted case.
We assume that f is bounded from below by f⋆ and fi is β-smooth. Further, we assume gi(x) := ∇fi(x; ζi) is an unbiased

stochastic gradient of fi with variance bounded by σ2. For some results, we assume µ ≥ 0 (strong) convexity. Note that σ
only bounds the variance within clients.

Now, we examine some additional definitions and introduce some technical lemmas.

7.1. Additional definitions

We make precise a few definitions and explain some of their implications.

A1 There exists constants G ≥ 0 and B ≥ 1 such that

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ G2 +B2∥∇f(x)∥2,∀x (3)

A2 fi is µ-convex for µ ≥ 0 and satisfies:

⟨∇fi(x),y − x⟩ ≥ −(fi(x)− fi(y) +
µ

2
∥x− y∥2),∀i,x,y. (4)

Here, we allow that µ = 0 (we refer to this case as the general convex case as opposed to strongly convex). It is also
possible to generalize all proofs here to the weaker notion of PL-strong convexity [2].



A3 gi(x) := ∇fi(x; ζi) is unbiased stochastic gradient of fi with bounded variance

Eζi [∥gi(x)−∇fi(x)∥2] ≤ σ2,∀i,x. (5)

Note that (A3) only bounds the variance within the same client, but not the variance across the clients.

A4 {fi} are β-smooth and satisfy:

∥∇fi(x)−∇fi(y)∥ ≤ β∥x− y∥,∀i,x,y. (6)

The assumption (A4) also implies the following quadratic upper bound on fi

fi(y) ≤ fi(x) + ⟨∇f(x),y − x⟩+ β

2
∥y − x∥2.

If additionally the function {fi} are convex and x⋆ is an optimum of f , (A4) implies

1

2βN

N∑
i=1

∥∇fi(x)−∇fi(x⋆)∥2 ≤ f(x)− f⋆.

Further, if fi is twice-differentiable, (A4) implies that

∥∇2fi(x)∥ ≤ β,∀x.

7.2. Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. The two lemmas below are useful to
unroll recursions and derive convergence rates. The first one is a slightly improved (and simplified) version of ( [10], Theorem
2). It is straightforward to remove the additional logarithmic terms if we use a varying step-size ( [4], Lemma 13).

Lemma1 (linear convergence rate).
For every non-negative sequence {dr−1}r≥1 and any parameters µ > 0, ηmax ∈ (0, 1

µ ], c ≥ 0, R ≥ 1
2ηmaxµ

, there exists a

constant step-size η ≤ ηmax and weights wr := (1− µη)1−r such that for WR :=
∑R+1

r=1 wr,

ΨR :=
1

WR

R+1∑
r=1

(
wr

η
(1− µη)dr−1 −

wr

η
dr + cηwr) = Õ(µd0 exp(−µηmaxR) +

c

µR
). (7)

Proof. By substituting the value of wr, we observe that we end up with a telescoping sum and estimate

ΨR =
1

ηWR

R+1∑
r=1

(wr−1dr−1 − wrdr) +
cη

WR

R+1∑
r=1

wr ≤
d0

ηWR
+ cη.

When R > 1
2µη , (1− µη)R ≤ exp(−µηR) ≤ 2

3 . For such an R, we can lower bound ηWR using

ηWR = η(1− µη)−R
R∑

r=0

(1− µη)r = η(1− µη)−R 1− (1− µη)R

µη
≥ (1− µη)−R 1

3µ
.

This proves that for all R ≥ 1
2µη ,

ΨR ≤ 3µd0(1− µη)R + cη ≤ 3µd0 exp(−µηR) + cη.

The lemma now follows by carefully tuning η. Consider the following two cases depending on the magnitude of R and
ηmax:



• Suppose 1
2µR ≤ ηmax ≤ log(max(1,µ2Rd0/c))

µR . Then we can choose η = ηmax,

ΨR ≤ 3µd0 exp[−µηmaxR] + cηmax ≤ 3µd0 exp[−µηmaxR] + Õ( c

µR
).

• Instead if ηmax > log(max(1,µ2Rd0/c))
µR , we pick η = log(max(1,µ2Rd0/c))

µR to claim that

ΨR ≤ 3µd0 exp[− log(max(1, µ2Rd0/c))] + Õ(
c

µR
) ≤ Õ( c

µR
).

The next lemma is useful to derive convergence rates for general convex functions (µ = 0) and non-convex functions.

Lemma 2 (sub-linear convergence rate).
For every non-negative sequence {dr−1}r≥1 any parameters ηmax ≥ 0, c ≥ 0, R ≥ 0, there exists a constant step-size

η ≤ ηmax and weights wr = 1 such that,

ΨR :=
1

R+ 1

R+1∑
r=1

(
dr−1

η
− dr

η
+ c1η + c2η

2) ≤ d0
ηmax(R+ 1)

+
2
√
c1d0√

R+ 1
+ 2(

d0
R+ 1

)
2
3 c

1
3
2 . (8)

Proof. Unrolling the sum, we can simplify

ΨR ≤
d0

η(R+ 1)
+ c1η + c2η

2.

Similar to the strongly convex case (Lemma 1), we distinguish the following cases:

• When R+ 1 ≤ d0

c1η2
max

, and R+ 1 ≤ d0

c2η3
max

, we pick η = ηmax to claim

ΨR ≤
d0

ηmax(R+ 1)
+ c1ηmax + c2η

2
max ≤

d0
ηmax(R+ 1)

+

√
c1d0√
R+ 1

+ (
d0

R+ 1
)

2
3 c

1
2
2 .

• In the other case, we have η2max ≥ d0

c1(R+1) or η2max ≥ d0

c2(R+1) . We choose η = min{
√

d0

c1(R+1) ,
3

√
d0

c2(R+1)} to prove

ΨR ≤
d0

η(R+ 1)
+ cη =

2
√
c1d0√

R+ 1
+ 2 3

√
d20c2

(R+ 1)2
.

Next, we state a relaxed triangle inequality true for the squared ℓ2 norm.

Lemma 3 (relaxed triangle inequality).
Let {v1, · · · ,vτ} be τ vectors in Rd. The the following are true:{

∥vi + vj∥2 ≤ (1 + a)∥vi∥2 + (1 + 1
a )∥vj∥2, ∀a > 0,

∥
∑τ

i=1 vi∥2 ≤ τ
∑τ

i=1 ∥vi∥2.
(9)

Proof. The proof of the first statement for any a > 0 follows from the identity:

∥vi + vj∥2 = (1 + a)∥vi∥2 + (1 +
1

a
)∥vj∥2 − ∥

√
avi +

1√
a
vj∥2.

For the second inequality, we use the convexity of x→ ∥x∥2 and Jensen’s inequality

∥1
τ

τ∑
i=1

vi∥2 ≤
1

τ

τ∑
i=1

∥vi∥2.

Next we state an elementary lemma about expectations of norms of random vectors.



Lemma 4 (separating mean and variance).
Let Ξ1, · · · ,Ξτ be τ random variables in Rd which are not necessarily independent. First suppose that their mean is

E[Ξi] = ξi and variance is bounded as E[∥Ξi − ξi∥2] ≤ σ2. Then, the following holds

E[∥
τ∑

i=1

Ξi∥2] ≤ ∥
τ∑

i=1

ξi∥2 + τ2σ2. (10)

Now instead suppose that their conditional mean is E[Ξi|Ξi−1, · · · ,Ξ1] = ξi, i.e. the variables {Ξi − ξi} form a
martingale difference sequences, and the variance is bounded by E[∥Ξi − ξi∥2] ≤ σ2 as before. Then we can show the tighter
bound

E[∥
τ∑

i=1

Ξi∥2] ≤ 2∥
τ∑

i=1

ξi∥2 + 2τσ2. (11)

Proof. For any random variable X,E[X2] = (E[X − E[X]])2 + (E[X])2 implying

E[∥
τ∑

i=1

Ξi∥2] = ∥
τ∑

i=1

ξi∥2 + E[∥
τ∑

i=1

Ξi − ξi∥2].

Expanding the above expression using relaxed triangle inequality (Lemma 3) proves the first claim:

E[∥
τ∑

i=1

Ξi − ξi∥2] ≤ τ

τ∑
i=1

E[∥Ξi − ξi∥2] ≤ τ2σ2.

For the second statement, ξi is not deterministic and depends on Ξi−1, · · · ,Ξ1. Hence we have to resort to the cruder
relaxed triangle inequality to claim

E[∥
τ∑

i=1

Ξi∥2] ≤ 2∥
τ∑

i=1

ξi∥2 + 2E[∥
τ∑

i=1

Ξi − ξi∥2]

and then use the tighter expansion of the second term:

E[∥
τ∑

i=1

Ξi − ξi∥2] =
∑
i,j

E[(Ξi − ξi)
T (Ξj − ξj)] =

∑
i

E[∥Ξi − ξi∥2] ≤ τσ2.

The cross terms in the above expression have zero mean since {Ξi − ξi} form a martingale difference sequence.

8. Properties of convex functions
We now study two lemmas which hold for any smooth and strongly-convex functions. The first is a generalization of the

standard strong convexity inequality (A2), but can handle gradients computed at slightly perturbed points.

Lemma 5 (perturbed strong convexity).
The following holds for any β-smooth and µ-strongly convex function h:

⟨∇h(x), z − y⟩ ≥ h(z)− h(y) +
µ

4
∥y − z∥2 − β∥z − x∥2,∀x,y, z ∈ h (12)

Proof. Given any x,y and z, we get the following two inequalities using smoothness and strong convexity of h:

⟨∇h(x), z − x⟩ ≥ h(z)− h(x)− β

2
∥z − x∥2,

⟨∇h(x),x− y⟩ ≥ h(x)− h(y) +
µ

2
∥y − x∥2.

Further, applying the relaxed triangle inequality gives

µ

2
∥y − x∥2 ≥ µ

4
∥y − x∥2 =

µ

2
∥x− z∥2.



Combining all the inequalities together we have

⟨∇h(x), z − y⟩ ≥ h(z)− h(y) +
µ

4
∥y − z∥2 − β + µ

2
∥z − x∥2.

The lemma follows since β ≥ µ.

Lemma 6 (contractive mapping).
For any β-smooth and µ -strongly convex function h and step-size η ≤ 1

β , the following is true

∥x− η∇h(x)− y + η∇h(y)∥2 ≤ (1− µη)∥x− y∥2,∀x,y ∈ h. (13)

Proof.

∥x− η∇h(x)− y + η∇h(y)∥2 = ∥x− y∥2 + η2∥∇h(x)−∇h(y)∥2 − 2η⟨∇h(x)−∇h(y),x− y⟩
≤ ∥x− u∥2 + (η2β − 2η)⟨∇h(x)−∇h(y),x− y⟩.

Recall our bound on the step-size η ≤ 1
β which implies that (η2β − 2η) ≤ −η. Finally, apply the µ-strong convexity of h to

get
−η⟨∇h(x)−∇h(y), (x)− y⟩ ≤ −ηµ∥x− y∥2.

9. Convergence of elastic aggregation
Here we will give a general convergence rate for elastic aggregation and in the next section, we will use it to analyze the

ideal convergence rate for our proposed elastic aggregation.

9.1. elastic aggregation

We outline the general aggregation method in Algorithm 3. In round r we sample Sr ⊆ [N ] clients with |Sr| = S and then
perform the following updates:

Step 1: Starting from the shared global parameters yr
i,0 = xr−1, we update the local parameters for k ∈ [K]

yr
i,k = yr

i,k−1 − ηlgi(y
r
i,k−1).

Step 2: Compute the new global parameters using only updates from the clients i ∈ Sr and a global step-size ηg:

xr = xr−1 +
1

S
ϕηg

∑
i∈Sr

(yr
i,K − xr−1). (14)

where ϕ is the parameter sensitivities respect to xr−1. Finally, for some weights {wr}, we output x̄R = xr−1 with
probability wr∑

τ wτ
for r ∈ {1, · · · , R+ 1}.

9.2. Bounding heterogeneity

Recall our bound on the gradient dissimilarity:

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ G2 +B2∥∇f(x)∥2.

If {fi} are convex, we can relax the assumption to

1

N

N∑
i=1

∥∇fi(x)∥2 ≤ G2 + 2βB2(f(x)− f⋆).

We defined two variants of the bounds on the heterogeneity depending of whether the functions are convex or not. Suppose
that the functions f is indeed convex as in (7.1) and β-smooth as in (7.1), then it is straightforward to see that (9.2) implies
(9.2). Suppose that the functions {f1, · · · , fN} are convex and β-smooth. Then (9.2) is satisfied with B2 = 2 since



Algorithm 3: Simplified elastic aggregation
For the convenience of representation, we simplify or omit some extra hyper parameters (i.e. τ, µ) and processes that

will not affect the convergence analysis.
server input: initial x, and global step-size ηg
client’s input: local step-size ηl
for each round r = 1, · · · , R do

sample clients S ⊆ {1, · · · , N}
communicate x to all clients i ∈ S
for client i ∈ S do

initialize local model yi ← x
accumulate local parameter sensitivities ϕi ← Φ(x)
for k = 1, · · · ,K do

compute mini-batch gradient gi(yi)
yi ← yi − ηlgi(yi)

communicate ∆yi ← yi − x and ϕi

∆x← 1
|S|

∑
i∈S ∆yi

ϕ← 1
|S|

∑
i∈S ϕi

x← x+ ϕηg∆x

1

N

N∑
i=1

∥∇fi(x)∥2 ≤
2

N

N∑
i=1

∥∇fi(x⋆)∥2 + 2

N

N∑
i=1

∥∇fi(x)−∇fi(x⋆)∥2

≤ 2

N

N∑
i=1

∥∇fi(x⋆)∥2︸ ︷︷ ︸
=:σ2

f

+4β(f(x)− f⋆).

Thus, (9.2) is equivalent to the heterogeneity assumption of ( [8]) with G2 = σ2
f . Instead, if the functions are possibly

non-convex, then G = ϵ corresponds to the local dissimilarity defined in ( [5]). Note that assuming G is negligible is quite
strong and corresponds to the strong-growth condition ( [11]).

9.3. Rates of convergence

Theorem I. Suppose that the functions {fi} satisfies assumptions A1, A3 and A4. Then, in each of the following cases, there
exist weights {wr} and local step-sizes ηl such that for any ϕηg ≥ 1 the output of general aggregation x̄R satisfies

Strongly convex: fi satisfies (A2) for µ > 0, ηl ≤ 1
8(1+B2)βKϕηg

, R ≥ 8(1+B2)β
µ then

E[f(x̄R)]− f(x⋆) ≤ Õ( M2

µRKS
+

βG2

µ2R2
+ µD2 exp(− µ

16(1 +B2)β
R)), (15)

General convex: fi satisfies (A2) for µ = 0, ηl ≤ 1
(1+B2)8βKϕηg

, R ≥ 1 then

E[f(x̄R)]− f(x⋆) ≤ O( MD√
RKS

+
D4/3(βG2)1/3

(R+ 1)2/3
+

B2βD2

R
), (16)

Non-convex: fi satisfies (A1) and ηl ≤ 1
(1+B2)8βKϕηg

, then

E[∥∇f(x̄R)∥2] ≤ O(βM
√
F√

RKS
+

F 2/3(βG2)1/3

(R+ 1)2/3
+

B2βF

R
), (17)



where M2 := σ2(1 + S
ϕ2η2

g
) +K(1− S

N )G2, D := ∥x0 − x⋆∥2, and F := f(x0)− f(x⋆).

9.4. Proof of convergence

We will only prove the rate of convergence for convex functions here. The corresponding rates for non-convex functions
are easy to derive following the techniques in the rest of the paper.

Lemma 7. (one round progress) Suppose our functions satisfies assumptions (A1) and (A2)-(A4). For any step-size satisfying
ηl ≤ 1

(1+B2)8βKηg
and effective step-size η̃ := Kϕηgηl, the updates of general aggregation satisfy

E[∥xr − x⋆]∥2 ≤(1− µη̃

2
)E[∥xr−1 − x⋆∥2] + (

1

KS
)η̃2σ2

+ (1− S

N
)
4η̃2

S
G2 − η̃(E[f(xr−1)]− f(x⋆)) + 3βη̃Er,

where Er is the drift caused by the local updates on the clients defined to be

Er :=
1

KN

K∑
k=1

N∑
i=1

Er[∥yr
i,k − xr−1∥2].

Proof. We start with the observation that the updates (10) and (11) imply that the server update in round r can be written as
below (dropping the superscripts everywhere)

{
∆x = − η̃

KS

∑
k,i∈S gi(yi,k−1),

E[∆x] = − η̃
KN

∑
k,i E[∇fi(yi,k−1)].

(18)

We adopt the convention that summations are always over k ∈ [K] or i ∈ [N ] unless otherwise stated. Expanding using
above observing, we proceed as4

E[∥x+∆x− x⋆∥2] =∥x− x⋆∥2 − 2η̃

KN

∑
k,i

⟨∇fi(yi,k−1),x− x⋆⟩

+ η̃2Er−1[∥
1

KS

∑
k,i∈S

gi(y(i, k− 1))∥2]

≤∥x− x⋆∥2− 2η̃

KN

∑
k,i

⟨∇fi(yi,k−1),x− x⋆⟩︸ ︷︷ ︸
A1

+ η̃2Er−1[∥
1

KS

∑
k,i∈S

∇fi(yi,k−1)∥2]︸ ︷︷ ︸
A2

+
η̃2σ2

KS
.

We can directly apply Lemma 5 with h = fi,x = yi,k−1,y = x⋆ and z = x to the first term A1

A1 =
2η̃

KN

∑
k,i

⟨∇fi(yi,k−1),x
⋆ − x⟩

≤ 2η̃

KN

∑
k,i

(fi(x
⋆)− fi(x) + β∥yi,k−1 − x∥2 − µ

4
∥x− x⋆∥2)

= −2η̃(f(x)− f(xstar) +
µ

4
∥x− x⋆∥2) + 2βη̃E .

4We use the notation Er−1[.] to mean conditioned on filtration r i.e. on all the randomness generated prior to round r.



For the second term A2, we repeatedly apply the relaxed triangle inequality (Lemma 4)

A2 = η̃2Er−1[∥
1

KS

∑
k,i∈S

∇fi(yi,k−1)−∇fi(x) +∇fi(x)∥2]

≤ 2η̃2Er−1[
1

KS

∑
k,i∈S

∇fi(yi,k−1 −∇fi(x))∥2] + 2η̃2Er−1[∥
1

S

∑
i∈S
∇fi(x)∥2]

≤ 2η̃2

KN

∑
i,k

Er−1[∥∇fi(yi,k−1)−∇fi(x)∥2] + 2η̃2Er−1[∥
1

S

∑
i∈S
∇fi(x)−∇f(x)∥2]

≤ 2η̃2β2

KN

∑
i,k

Er−1[∥yi,k−1 − x∥2] + 2η̃2∥∇f(x)∥2 + (1− S

N
)4η̃2

1

SN

∑
i

∥∇fi(x)∥2

≤ 2η̃2β2E + 8η̃2β(B2 + 1)(f(x)− f(x⋆)) + (1− S

N
)
4η̃2

S
G2

The last step used Assumption (G,B)-BGD assumption (14) that 1
N

∑N
i=1 ∥∇fi(x)∥2 ≤ G2 + 2βB2(f(x) − f⋆). The

extra (1− S
N ) improvement we get is due to sampling the functions {fi} without replacement. Plugging back the bounds on

A1 and A2,

Er−1[∥x+∆x− x⋆∥2] ≤(1− µη̃

2
)∥x− x⋆∥2 − (2η̃ − 8βη̃2(B2 + 1))(f(x)− f(x⋆))

+ (1 + η̃β)2βη̃E + 1

KS
η̃2σ2 + (1− S

N
)
4η̃2

S
G2.

The lemma now follows by observing that 8βη̃(B2 + 1) ≤ 1 and that B ≥ 0.

Lemma 8 (bounded drift). Suppose our functions satisfies assumptions (A1) and (A2)–(A4). Then the updates of general
aggregation for any step-size satisfying ηl ≤ 1

(1+B2)8βKϕηg
have bounded drift:

3βη̃Er ≤
2η̃

3
(E[f(xr−1)])− f(x⋆) +

η̃2σ2

2Kη2g
+ 18βη̃3G2. (19)

Proof. If K = 1, the lemma trivially holds since yi,0 = x for all i ∈ [N ] and Er = 0. Assume K ≥ 2 here on. Recall that
the local update made on client i is yi,k = yi,k−1 − ηlgi(yi,k−1). Then,

E[∥yi,k − x∥2] =E[∥yi,k−1 − x− ηlgi(yi,k−1)∥2]
≤E[∥yi,k−1 − x− ηl∇fi(yi,k−1)∥2] + η2l σ

2

≤(1− 1

K − 1
)E[∥yi,k−1 − x∥2] +Kη2l ∥∇fi(yi,k−1)∥2 + η2l σ

2

=(1− 1

K − 1
)E[∥yi,k−1 − x∥2] + η̃2

ϕηgK
∥∇fi(yi,k−1)∥2 +

η̃2σ2

K2ϕ2η2g

≤(1− 1

K − 1
)E[∥yi,k−1 − x∥2] + 2η̃2

ϕηgK
∥∇fi(yi,k−1)−∇fi(x)∥2

+
2η̃2

ϕηgK
∥∇fi(x)∥2 +

η̃2σ2

K2ϕ2η2g

≤(1− 1

K − 1
+

2η̃2β2

ϕηgK
)E[∥yi,k−1 − x∥2] + 2η̃2

ϕηgK
∥∇fi(x)∥2 +

η̃2σ2

K2ϕ2η2g

≤(1− 1

2(K − 1)
)E[∥yi,k−1 − x∥2] + 2η̃2

ϕηgK
∥∇fi(x)∥2 +

η̃2σ2

K2ϕ2η2g
.



In the above proof we separated the mean and the variance in the first inequality, then used the relaxed triangle inequality
with a = 1

K−1 in the next inequality. Next equality uses the definition of η̃, and the rest follow from the Lipschitzness of the
gradient. Unrolling the recursion above,

E[∥yi,k − x∥2] ≤
k−1∑
τ=1

(
2η̃2

ϕηgK
∥∇fi(x)∥2 +

η̃2σ2

K2ϕ2η2g
)(1− 1

2(K − 1)
)τ ≤ (

2η̃2

ϕηgK
∥∇fi(x)∥2 +

η̃2σ2

K2ϕ2η2g
3K.

Averaging over i and k, multiplying by 3βη̃ and then using Assumption A1,

3βη̃Er ≤
1

N

∑
i

18βη̃3∥∇fi(x)∥2 +
3βη̃3σ2

Kϕ2η2g
≤ 18βη̃3G2 +

3βη̃3σ2

Kϕ2η2g
+ 36β2η̃3B2(f(x)− f(x⋆))

The lemma now follows from our assumption that 8(B2 + 1)βη̃ ≤ 1.

Proof of Theorem I Adding the statements of Lemmas 7 and Lemmas 8, we get

E[∥x+∆x⋆∥2] ≤(1− µη̃

2
)E[∥x− x⋆∥2] + 1

KS
η̃2σ2 + (1− S

N
)
4η̃2

S
G2 − η̃(E[f(x)]− f(x⋆))

+
2η̃

3
(E[f(x)]− f(x⋆)) + η̃2(

σ2

KS
(1 +

S

ϕ2η2g
) +

4G2

S
(1− S

N
) + 18βη̃G2).

Moving the f(x)− f(x⋆) term and dividing throughout by η̃
3 , we get the following bound for any η̃ ≤ 1

8(1+B2)β

E[f(xr−1)]− f(x⋆) ≤3

η̃
(1− µη̃

2
)∥xr−1 − x⋆∥2 − 3

η̃
∥xr − x⋆∥2

+ 3η̃(
σ2

KS
(1 +

S

ϕ2η2g
) +

4G2

S
(1− S

N
) + 18βη̃G2).

If µ = 0 (general convex), we can directly apply Lemma 2. Otherwise, by averaging using weights wr = (1− µη̃
2 )1−r.

and using the same weights to pick output x̄R, we can simplify the above recursive bound to prove that for any η̃ satisfying
1
µR ≤ η̃ ≤ 1

8(1+B2)β

E[f x̄R]− f(x⋆) ≤ 3∥x0 − x⋆∥2︸ ︷︷ ︸
=:d

µ exp(− η̃

2
µR)

+ η̃(
2σ2

KS
(1 +

S

ϕ2η2g
) +

8G2

S
(1− S

N
)︸ ︷︷ ︸

=:c1

)

+ η̃2(36βG2︸ ︷︷ ︸
=:c2

)

Now, the choice of η̃ = min{ log(max(1,µ2Rd/c1))
µR , 1

(1+B2)8β } yields the desired rate. The proof of the non-convex case is
very similar and also relies on Lemma 2.

9.5. Lower bound for general aggregation

We first formalize the class of algorithms we look at before proving out lower bound.

A6 We assume that general aggregation is run with ηg = 1,K > 1, and arbitrary possibly adaptive step-sizes {η1, · · · ηR}
are used with ηr ≤ 1

µ and fixed within a round for all clients. Further, the server update is a convex combination of the client
updates with non-adaptive weights.



Note that we only prove the lower bound here for ηg = 1. In fact, bu taking ηg infinitely large and scaling ηl ∝ 1
Kηg

such
that the effective step size η̃ = ηlηgK remains constant, general aggregation reduces to the simple large batch SGD method.
Hence, proving a lower bound for arbitrary ηg is not possible, but also is of questionable relevance. Further, note that when
σ2 = 0, the upper bound in Theorem V uses ηg = 1 and hence the lower bound serves to show that our analysis is tight.

Below we state a more formal version of Theorem II.

Theorem II. For any positive constants G,µ, there exists µ -strongly convex functions satisfying A1 for which that the output
of general aggregation satisfying A6 has the error for any r ≥ 1:

f(xr)− f(x⋆) ≥ Ω(min(f(x0)− f(x⋆),
G2

µR2
)). (20)

Proof. Consider the following simple one-dimensional functions for any given µ and G:{
f1(x) := µx2 +Gx,
f2(x) := −Gx,

with f(x) = 1
2 (f1(x) + f2(x)) =

µ
2x

2 and optimum at x = 0. Clearly f is µ-strongly convex and further f1 and f2 satisfy
A1 with B = 3. Note that we chose f2 to be a linear function (not strongly convex) to simplify computations. The calculations
make here can be extended with slightly more work for (f̃2 = µ

2x
2 −Gx).

Let us start general aggregation from x0 > 0. A single local update for f1 and f2 in round r ≥ 1 is respectively{
y1 = y1 − ηr(2µx+G)
y2 = y2 + ηrG

Then, straightforward computations show that the update at the end of round r is of the following form for some averaging
weight α ∈ [0, 1]

xr = xr−1((1− α)(1− 2µηr)
K + α) + ηrG

K−1∑
τ=0

(α− (1− α)(1− 2µηr)
τ ).

Since α was picked obliviously, we can assume that α ≤ 0.5. If indeed α > 0.5, we can swap the definitions of f1 and f2
and the sign of x0. With this, we can simplify as

xr ≥ xr−1 (1− 2µηr)
K + 1

2
+

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ ).

Observe that in the above expression, the right hand side is increasing with ηr – this represents the effect of the client drift
and increases the error as the step-size increases. The left hand side decreases with ηr – this is the usual convergence observed
due to taking gradient steps. The rest of the proof is to show that even with a careful balancing of the two terms, the effect of
G cannot be removed. Lemma 9 performs exactly such a computation to prove that for any r ≥ 1,

xr ≥ cmin(x0.
G

µR
).

We finish the proof by noting that f(xr) = µ
2 (x

r)2.

Lemma 9. Suppose that for all r ≥ 1, ηr ≤ 1
µ and the following is true:

xr ≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ ). (21)

Then, there exists a constants c > 0 such that for any sequence of step-size {ητ} :



xr ≥ cmin(x0,
G

µR
)

Proof. Define γr = µηrR(K − 1). Such a γr exists and is positive since K ≥ 2. Then, γr satisfies

(1− 2µηr)
K−1

2 = (1− 2γr
R(K − 1)

)
K−1

2 ≤ exp(−γr
R
).

we then have

xr ≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=0

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

ηrG

2

K−1∑
τ=(K−1)/2

(1− (1− 2µηr)
τ )

≥ xr−1(1− 2µηr)
K +

γrG

4µ
(1− exp(−γr

R
)).

The second inequality follows because ηr ≤ 1
µ implies that (1− (1− 2µηr)

τ ) is always positive. If γr ≥ R
8 , then we have

a constant c1 ∈ (0, 1
32 ) which satisfies

xr ≥ c1G

µ
.

On the other hand, if γr < R
8 , we have a tighter inequality

(1− 2µηr)
K−1

2 = (1− 2γr
R(K − 1)

)
K−1

2 ≤ 1− γr
R
,

implying that

xr ≥ xr−1(1− 2γr
R(K − 1)

)K +
γ2
rG

4Rµ
≥ xr−1(1− 4γr

R
) +

γ2
rG

4µR
. (22)

The last step used Bernoulli’s inequality and the fact that K − 1 ≤ K/2 for K ≥ 2. Observe that in the above expression,
the right hand side is increasing with γr –this represents the effect of the client drift and increases the error as the step-size
increases. The left hand side decreases with γr –this is the usual convergence observed due to taking gradient steps. The rest
of the proof is to show that even with a careful balancing of the two terms, the effect of G cannot be removed.

Suppose that all rounds after r0 ≥ 0 have a small step-size i.e. γr ≤ R/8 for all r > r0 and hence satisfies (22). Then we
will prove via induction that

xr ≥ min((1− 1

2R
)r−r0︸ ︷︷ ︸

=:cr

xr0 ,
G

256µR
)

For r = r0, (9.5) is trivially satisfied. Now for r > r0,

xr ≥ xr−1(1− 4γr
R

) +
γ2
rG

4µR
≥ min(xr−1(1− 1

2R
),

G

256µR
) = min(crx

r0 ,
G

256µR
).

The first step is because of (22) and the last step uses the induction hypothesis. The second step considers two cases for γr:
either γr ≤ 1

8 and (1− 1
2R ) ≥ (1− 1

2R ), or γ2
r ≥ 1

64 . Finally note that cr ≥ 1
2 using Bernoulli’s inequality. We have hence

proved

xR ≥ min(
1

2
xr0 ,

G

256µR
)

Now suppose γr0 > R
8 . Then (9.5) implies that xR ≥ cG

µR for some constant c > 0. If instead no such r0 ≥ 1 exists, µR then
we can set r0 = 0. Now finally observe that the previous proof did not make any assumption on R, and in fact the inequality
stated above holds for all r ≥ 1.
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