Supplementary Materials for Elastic Aggregation for Federated Optimization

Dengsheng Chen'*, Jie Hu?3! Vince Junkai Tan*, Xiaoming Wei'!, Enhua Wu?3-°7
! Meituan 2 State Key Laboratory of Computer Science, ISCAS
3 University of Chinese Academy of Sciences * Bytedance Inc. ® University of Macau

{chendengsheng,weixiaoming}@meituan.com, hujie@ios.ac.cn, vince.tan.jun.kai@gmail.com, ehwu@um.edu.mo

1. More details about parameter sensitivity

An intuitive approach to compute sensitivity * for the " parameter is using the average method over batches:

Q=Y [g(8%2)/|Dsl, (D

€Dy,

However, this average method may not be suitable for a real scenario in federated learning, for that training data may be
collected randomly. The momentum approach described in paper is more flexible for us to do an online accumulating of
parameter sensitivity. Also, we find that the momentum approach can achieve a better performance and is more robust for
different 7 under different tasks compared with the average approach. We also conduct an experiment on synthetic federated
dataset of CIFAR-10. We show the inspired percentage of parameters during training in Fig. [I] It indicates that momentum
approach prefers to keep more parameters to be restricted from client drifting. However, the average approach prefers to
inspire more parameters to explore a better distribution. In federated learning, we are more eager to solve the client-drift
problem caused by non-IID-ness via restricting parameters. The final accuracy in Tab.[1|also indicates a better performance of
momentum approach.

‘ naive elastic(average) elastic(momentum)
Train Acc(%) | 55.39 55.49 58.74
Test Acc(%) 61.22 61.11 61.45

Table 1. Performance with different parameter sensitivity computation approach.

2. Data distribution

Generating synthetic federated datasets Different distribution has a very large influence on the final performance of
federated optimization. The Dirichlet distribution is used on the label ratios to ensure uneven label distributions among clients
for non-IID splits, as in [[12]. This can generate nonlIDness with an unbalanced sample number on each label. The Dirichlet
distribution is a density over a K dimensional vector p whose K components are positive and sum to 1. Dirichlet can support
the probabilities of a K-way categorical event. In federated learning, we can view K clients’ sample numbers obeying the
Dirichlet distribution. You can check hereﬂ for more details of the Dirichlet distribution. To generate unbalanced data, we
sample the number of data points from a log-normal distribution. Controlling the variance of log-normal distribution gives
unbalanced data.

We use the above-introduced approach to generate synthetic federated datasets for MNIST, CIFAR-10, and CINIC-10 in
our paper.

*Equal contribution.
Corresponding author. This work is supported in part by NSFC Grants (62072449).
Uhttps://en.wikipedia.org/wiki/Dirichlet_distribution

86 -

84 -

o]
N
1

©
o
1

Inspired (%)
~
oo
1

76 A
74
72
—— Average
70 —— Momentum

0 25 50 75 100 125 150 175 200

Rounds

Figure 1. Percentage of parameters boosted during training.

Fed-CIFAR100 The dataset is derived from the CIFAR-100 dataseﬂ The training and testing examples are partitioned
across 500 and 100 clients (respectively). No clients share any data samples, so it is a true partition of CIFAR-100. The train
clients have string client IDs in the range [0-499], while the test clients have string client IDs in the range [0-99]. The train
clients form a true partition of the CIFAR-100 training split, while the test clients form a true partition of the CIFAR-100
testing split. The data partitioning is done using a hierarchical Latent Dirichlet Allocation (LDA) process, referred to as the
Pachinko Allocation Method [6]]. This method uses a two-stage LDA process, where each client has an associated multinomial
distribution over the coarse labels of CIFAR-100, and a coarse-to-fine label multinomial distribution for that coarse label
over the labels under that coarse label. The coarse label multinomial is drawn from a symmetric Dirichlet with parameter
0.1, and each coarse-to-fine multinomial distribution is drawn from a symmetric Dirichlet with parameter 10. Each client has
100 samples. To generate a sample for the client, we first select a coarse label by drawing from the coarse label multinomial
distribution and then draw a fine label using the coarse-to-fine multinomial distribution. We then randomly draw a sample
from CIFAR-100 with that label (without replacement). If this exhausts the set of samples with this label, we remove the label
from the coarse-to-fine multinomial and renormalize the multinomial distribution.

Fed-EMNIST This dataset is derived from the Leaf [1] repositoryﬂ pre-processing of the Extended MNIST dataset, grouping
examples by the writer. This dataset does not include some additional preprocessing that MNIST includes, such as size
normalization and centering. In the Federated EMNIST data, the value of 1.0 corresponds to the background, and 0.0
corresponds to the color of the digits themselves. It contains 3,400 users, 62 label classes, and 671,585 training examples,
77,483 testing examples. Rather than holding out specific users, each user’s examples are split across train and test so that all
users have at least one example in the train and one example in the test. Writers that had less than 2 examples are excluded
from the data set.

3. Federated optimizer with elastic aggregation

Federated Average with Momentum (FedAvgM) and Elastic Aggregation have been presented in Algorithms. [T} FedProx
with Elastic Aggregation has been presented in Algorithms. [2] FedAvgM is an enhancement of FedAvg on the server side,
and FedProx is an enhancement of FedAvg on the client side. Elastic aggregation can work well with other complementary
approaches designed for the client-side or server-side. In Fig.[2] we show the convergence speed with different optimizers.

Zhttps://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/TalwalkarLab/leaf

Algorithm 1: FedAvg with Momentum [9] and Elastic Aggregation

A variable with a superscript 4 indicates the i*" element of the variable. A variable with a subscript k indicates the
variable from k*" client.),/ are learning rates of server and clients respectively. 11, 41/, T are the hyper-parameters.
6,0, € R™ are the server’s and the k*" client’s parameters respectively. Q2 € R” is the aggregated parameter
sensitivity. {2, € R™ is the parameter sensitivity on the k" client. m € R™ is the momentum vector.

Initialize 6

Initialize m < 0

By, < Sample a subset of training data Dj,.
Dy, < Drop the samples of By, from Dj,.
for each round do

for each activated client k do
Initialize 2, as zeros.

for each batch data x € By, do
g =V||F(6;2)|3

fori€[1,---,n]do _
| pS + (1= p)lg’]
9]@(*0

for each epoch do
for each batch data x € Dy do
L 91@ — Hk — n’Vék(F(Gk, SC))

L Ap=0,—0
wi 4= |Dy|/ 324 [Dil; @ = 324 (wy, - Qp); ' = max(€Q)
fori e [1,--- ,n|do

C=1+7-Q/Q
AZ‘:CZ'Zk(wk'A%) ‘
ml<—,u'ml—|—(1—/¢’)Al
k9i<—9i—n-mi

FedAvg FedAvgM FedProx

55 7 55 7
50 - 601 50 -
S
2% 50 45
e
3 40 40
O
< 40
35 4 — NA — NA 351 — NA
— EA — EA — EA
30 T T T 1 30 T T T 1 30 T T T 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
2.0 7 2.0 7 2.0
— NA — NA — NA
— EA 18- — EA — EA
1.8 1.8
2 1.6 |
4161 1.4 1.6
1.4 1 121 1.4 1
T T T 1 1.0 T T T d T T T 1
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Rounds Rounds Rounds

Figure 2. Elastic aggregation can be easily integrated with different federated optimizers, achieving performance improvements.

Algorithm 2: FedProx 5] with Elastic Aggregation

A variable with a superscript 4 indicates the i*" element of the variable. A variable with a subscript k indicates the
variable from k*" client. 1,7’ are learning rates of server and clients respectively. j, T are the hyper-parameters. p is
penalty coefficient of FedProx. 6,6, € R™ are the server’s and the k*" client’s parameters respectively. € R™ is the
aggregated parameter sensitivity. {2, € R” is the parameter sensitivity on the k*" client.

Initialize 0

By, < Sample a subset of training data Dj,.
Dy, < Drop the samples of By, from Dy.
for each round do

for each activated client k do

Initialize 2, as zeros.

for each batch data x € By, do

9= V|[F(6:2)][3

fori€[1,---,n]do _
| pS + (1= p)lg’]
9]6(*9

for each epoch do
for each batch data x € Dy do
L O O — 1/ V L (F (O) + p(6 — 0%)
| A =0;,—0
k< Dkl / 2k 1Dkl @ = 305 (wi -); ' = max(9)
fori e [1,--- ,n|do
(i_: 147 QY _
AT =" (wr - AL)
| 0«60 —n A

g

4. The computational overhead of parameter sensitivity

This computational overhead can be neglectable in terms of total computational cost in the training phase. Moreover,
parameter sensitivity is not required in the inference phase.

In a training task, the parameter sensitivity is only calculated once for each round. Suppose that each round contains e
epochs, and several backward perform on a small fraction p of training instances, which is enough to precisely estimate the
parameter sensitivity. Thus, the additional computational cost can be roughly given by 5£—. Empirically, we set yx = 10% and
e = 10. The extra cost only takes 0.5% against the total training cost.

5. Communication overhead

As for the communication budget, we introduce no overhead for downloading the global model but require an extra
communication overhead for uploading the parameter sensitivities. And this overhead seems inevitable. Such as the well-
known related method mentioned in Table 5, the SCAFFOLD2019 [3]] also introduces such communication overhead. We
list the additional communication overhead using FedAvg [[7] as baseline in Tab. 2] (downloading parameters notes as 1x and
uploading parameters also notes as 1x, so the FedAvg is 2x in total):

FedAvg | FedAvgM | FedProx | SCAFFOLD | AdaOpt | PFNM | Ours
2x ‘ 2x ‘ 2x ‘ 4x ‘ 2x ‘ 2x ‘ 3x

Table 2. Communication overhead.

Pros Cons

SI
FedAvg Efficient, Robust .OVY convergence,
Limited upper performance

Fast convergence,

FedProx [5] Light extra overhead
Better performance
SCAFFOLD |[3] | Fast convergence Not robust
Fast , .
AdaOpt [9] ast convergence Considerable extra overhead

Excellent performance

Alleviate client drift,
PFNM [12] Excellent performance,
Fast convergence
Alleviate client drift,
Excellent performance,
Robust,

Fast convergence

Complex implementation,
Considerable extra overhead

Ours Light extra overhead

Table 3. Compare to prior works in pros/cons.

6. Compare to prior works in pros/cons

Here we list the pros/cons of several related works in Tab. [3] From the table, our proposed Elastic Aggregation basically
incorporates the advantages of other methods without any defect except a light extra computational overhead.

7. Technicalities
We formalize the problem as minimizing a sum of stochastic functions like [3|], with only access to stochastic samples:

1 N

min {f(x) = = > (fi(x) = Ec,[fi(w: G})

z€eRd

i=1

The functions f; represents the loss function on client i. All our results can be easily extended to the weighted case.

We assume that f is bounded from below by f* and f; is 8-smooth. Further, we assume g;(x) := V f;(«; (;) is an unbiased
stochastic gradient of f; with variance bounded by o2. For some results, we assume g > 0 (strong) convexity. Note that o
only bounds the variance within clients.

Now, we examine some additional definitions and introduce some technical lemmas.

7.1. Additional definitions

We make precise a few definitions and explain some of their implications.

A1l There exists constants G > 0 and B > 1 such that
1
N S IVEi(@)|? < G* + B?||Vf(=)|*, Va 3)
i=1

A2 f;is p-convex for p > 0 and satisfies:
(Vi) y - @) = ~(fi@) — fily) + Sz — yl?), Vi, .y, @

Here, we allow that ;1 = 0 (we refer to this case as the general convex case as opposed to strongly convex). It is also
possible to generalize all proofs here to the weaker notion of PL-strong convexity [2].

A3 gi(z) := Vfi(z; (;) is unbiased stochastic gradient of f; with bounded variance
B [lg:(=) = Vi(@)IP] < 0%, Vi, . 5)

Note that (A3) only bounds the variance within the same client, but not the variance across the clients.

A4 {f;} are B-smooth and satisfy:
IVfi(®) =V fi(y)|l < Bllz —yll, Vi, z, y. (6)

The assumption (A4) also implies the following quadratic upper bound on f;

fily) < file) +(Vf(z),y —z) + Slly — =|*.

If additionally the function { f;} are convex and x* is an optimum of f, (A4) implies
;N
55w 2 V(@) = VA < f(x) — -
i=1

Further, if f; is twice-differentiable, (A4) implies that
V2 fi()|| < B, Ve

7.2. Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. The two lemmas below are useful to
unroll recursions and derive convergence rates. The first one is a slightly improved (and simplified) version of ([10], Theorem
2). It is straightforward to remove the additional logarithmic terms if we use a varying step-size ([4], Lemma 13).

Lemmal (linear convergence rate).

For every non-negative sequence {d,_1},>1 and any parameters {1 > 0, lmax € (0, %L], c>0,R> ﬁ, there exists a

constant step-size 1) < Nmax and weights w, = (1 — ;m)lfr such that for Wg := Zfill Wy,

R+1
1 w w A .
Up = — E (1 - dr—1 — idr r) = O(ud — WNmax . 7
" 2 Gy ey = S o) = Oludo P itinacdt) + 4) v

Proof. By substituting the value of w,., we observe that we end up with a telescoping sum and estimate

] B e R+1 d
Up=—r Wp—1dp—1 — wWypd,) + — wrg—o—l—c.
T W ;(e) Wr 7; nWr

When R > ﬁ, (1 — pm)" < exp(—pnR) < 2. For such an R, we can lower bound W, using
R
- . _rl—(1—p)"
nWr =n(1—)™ (1= pn)” = n(1 — pn)~* o

1
> (1 —un) B—.
2 > (1 — pun) 3

. 1
This proves that for all R > 5,

U < 3udo(1 — pun) + en < 3udy exp(—pnR) + cn.

The lemma now follows by carefully tuning 7. Consider the following two cases depending on the magnitude of R and

nmax:

2
7 < Mmax < log(max(1,1"Rdo/€)) Then we can choose 7 = Drmaxs

. Suppose iR
U < 3udo exp[—pmax k] + Cmax < 3udo exp|—pirmax R] + O(p R)
* Instead if Nyax > log(max(tgm"/) we pick 1 = log(ma"(z’ngO/) to claim that
U < 3udg exp[— log(max(1, u? Rdy/c))] + O(,uR) @(MR)

The next lemma is useful to derive convergence rates for general convex functions (x« = 0) and non-convex functions.

Lemma 2 (sub-linear convergence rate).
For every non-negative sequence {d,_1},>1 any parameters nmax > 0,¢ > 0, R > 0, there exists a constant step-size

N < Nmax and weights w, = 1 such that,

R+1
U= %ﬂ ;(dTn‘l ~ dT—;” +c1m + ean?) < nmax(d]‘;+) f/g + 2(R‘:O 1)%c§. (8)
Proof. Unrolling the sum, we can simplify
Up < ———— +cn + can’.
n(R+1)
Similar to the strongly convex case (Lemma 1), we distinguish the following cases:
* When R+ 1< 33—, and R+ 1 < —9—, we pick 7 = nax to claim
Up < ﬂnmx(d;;-i-l) + C1Mmax + CoMpax < nmax(d]%"’_ 0 \/\/}gi_iol (Rcﬁ 1)%02%~

* In the other case, we have 02, > % or 2. > %. We choose) = min{\/q(%grl), i/ D } to prove

/ 2
\I/R S do + n = 2 Cldo + 9 3 dOCQ .
n(R+1) vVR+1 (R+1)2

Next, we state a relaxed triangle inequality true for the squared ¢ norm.

Lemma 3 (relaxed triangle inequality).

Let {vy,--- ,v;} be T vectors in R?. The the following are true:
{ lvs + o511 < (1+ @)fJoall® + (1 + Dllvil1?, va >0, ©)
I3y will® < 7320 (vl

Proof. The proof of the first statement for any a > 0 follows from the identity:
lvi +v;]1* = (1 + @) o |* + (1 +)||vg|\2 = [Vavi + \[vgl\Q
For the second inequality, we use the convexity of & — ||z||? and Jensen’s inequality
1 1
12>l < 23 il
i=1 i=1

Next we state an elementary lemma about expectations of norms of random vectors.

Lemma 4 (separating mean and variance).
Let Z1,--- ,Z, be T random variables in R® which are not necessarily independent. First suppose that their mean is
E[Z;] = & and variance is bounded as E[||Z; — &;||?] < o2. Then, the following holds

T T
E[l Y SlPI < 1) &ll? + 720 (10)
i=1 i=1
Now instead suppose that their conditional mean is E[Z;|Z;_1, -+ ,Z1] = &, i.e. the variables {Z; — &;} form a

martingale difference sequences, and the variance is bounded by E[||Z; — &;||?] < o2 as before. Then we can show the tighter
bound

B> % <21 &l + 2702, (11)
=1 =1

Proof. For any random variable X, E[X?] = (E[X — E[X]])? 4+ (E[X])? implying

E[| ZEz’H2] = Z§i||2 + E[]| ZEi — &%)
=1 =1 1=1

Expanding the above expression using relaxed triangle inequality (Lemma 3) proves the first claim:
E[lY = -&l’l <7) EllS: - &)%) < 7°0°
i=1 i=1

For the second statement, &; is not deterministic and depends on =;_1, - - - , =;. Hence we have to resort to the cruder
relaxed triangle inequality to claim

B EllP) <20 Y&l + 2B)i — &)
i=1 i=1

i=1

and then use the tighter expansion of the second term:
Ell Y i —&l° =) El(E - &) (5 - &) =) ElIE - &) < 70°.
i=1 i i

The cross terms in the above expression have zero mean since {Z; — &;} form a martingale difference sequence.

8. Properties of convex functions

We now study two lemmas which hold for any smooth and strongly-convex functions. The first is a generalization of the
standard strong convexity inequality (A2), but can handle gradients computed at slightly perturbed points.

Lemma 5 (perturbed strong convexity).
The following holds for any B-smooth and p-strongly convex function h:

(Vh(z),z —y) = h(z) — h(y) + %Ily — 2| = Bllz — 2|, Va,y,z € h (12)
Proof. Given any x, y and z, we get the following two inequalities using smoothness and strong convexity of h:
(Vh(z), 2~ 2) > h(z) ~ hie) - 5|z —],
(Vh(@),@ —y) = hi@) — h(y) + 5 ly — /.

Further, applying the relaxed triangle inequality gives

7
S

x — z||%
2

Elly —l? > Ly — =) =

Combining all the inequalities together we have

(Vh(z),z =y} > h(z) = hiy) + Tlly — =1 -

The lemma follows since 5 > p.

Lemma 6 (contractive mapping).
For any 3-smooth and . -strongly convex function h and step-size n < %, the following is true

& —nVh(z) —y +nVh(y)|* < (1 —)|z — y||*, Yz, y € h. (13)
Proof.
|z —nVh(xz) —y +nVh@)|* = |z — y|* + n*|Vh(z) — Vh(y)||> — 20(Vh(z) — Vh(y),z — y)
<@ —u|®+ (n*8 — 2n)(Vh(z) — Vh(y),z — y).

Recall our bound on the step-size n < % which implies that (23 — 2n) < —n. Finally, apply the u-strong convexity of h to
get

—n{Vh(z) — Vh(y), (z) - y) < —nulz - y|*.
9. Convergence of elastic aggregation

Here we will give a general convergence rate for elastic aggregation and in the next section, we will use it to analyze the
ideal convergence rate for our proposed elastic aggregation.

9.1. elastic aggregation

We outline the general aggregation method in Algorithm[3] In round 7 we sample S” C [N] clients with |S™| = S and then
perform the following updates:
Step 1: Starting from the shared global parameters y; , = x"~ !, we update the local parameters for k € [K]

y:k = ?13,1%1 - Ulgi(yf,kq)-
Step 2: Compute the new global parameters using only updates from the clients ¢ € S” and a global step-size n,:
T T— 1 T T—
=t o, ;:(yx —a'). (14)

where ¢ is the parameter sensitivities respect to " 1. Finally, for some weights {w, }, we output #% = z"~1 with
probability qurw forr e {1,--- ,R+1}.

-

9.2. Bounding heterogeneity

Recall our bound on the gradient dissimilarity:
X
N YoIVi@)? < G+ BV ().
i=1
If { f;} are convex, we can relax the assumption to

N
S IVA@)I < 6+ 288 (1)~ 1)
=1

We defined two variants of the bounds on the heterogeneity depending of whether the functions are convex or not. Suppose
that the functions f is indeed convex as in (7.1)) and 5-smooth as in (7.1)), then it is straightforward to see that (9.2)) implies
(9.2). Suppose that the functions {f1,- - - , fx } are convex and 3-smooth. Then (9.2) is satisfied with B2 = 2 since

Algorithm 3: Simplified elastic aggregation

For the convenience of representation, we simplify or omit some extra hyper parameters (i.e. T, u) and processes that
will not affect the convergence analysis.

server input: initial «, and global step-size 7,

client’s input: local step-size 7

for each roundr =1,--- /R do

sample clients S C {1,--- , N}

communicate x to all clients ¢ € S

for clienti € S do
initialize local model y; < x

accumulate local parameter sensitivities ¢; < ®(x)
fork=1,--- ,Kdo
L compute mini-batch gradient g;(y;)
Yi < Yi — m9i(yi)

communicate Ay; < y; — x and ¢;

: 1
Az E ZiES Ayl
¢ ﬁ Dies i
T — x + ¢ngAx

L L 2 X .
N;”vfi(iﬂ)n SN;HVﬁ(w M +N;\|Vf¢(w)—Vfi(m)

IA

N
2 IVA@I +45((@) - 7).

—.y2
_'Uf

Thus, (9.2) is equivalent to the heterogeneity assumption of ([8]]) with G* = o7. Instead, if the functions are possibly
non-convex, then G = € corresponds to the local dissimilarity defined in ([5]]). Note that assuming G is negligible is quite
strong and corresponds to the strong-growth condition ([L1]).

9.3. Rates of convergence

Theorem I. Suppose that the functions { f;} satisfies assumptions Al, A3 and A4. Then, in each of the following cases, there
exist weights {w, } and local step-sizes m; such that for any ¢ng, > 1 the output of general aggregation T satisfies

Strongly convex: f; satisfies (A2) for u > 0,1 < 8(1+B21)ﬁK¢nq ,R> 8(1+f2)ﬂ then
N M2 BGQ I
E[f(z™)] — f(z*) < O D? -~ R 15
(@)~ 1) < O peg + L + 1D byt gy). (1)
General convex: f; satisfies (A2) for p = 0,1; < m, R > 1 then
MD D4/3(ﬁG2)1/3 BQﬁDQ
E ~R _ * < O 16
F@)] = 1) < O e+ = pam +) (16)
Non-convex: f; satisfies (A1) and 7; < m, then
_ BMVFE F2?3(8G%H)Y3 B2BF
B[V £(@0)|1 < O e)) a7

RKS (R+1)%/3 R

where M? := o?(1 + ¢2Ln§) +K(1-%)G% D :=|z° —z*|?, and F := f(x°) — f(z*).

9.4. Proof of convergence

We will only prove the rate of convergence for convex functions here. The corresponding rates for non-convex functions
are easy to derive following the techniques in the rest of the paper.

Lemma 7. (one round progress) Suppose our functions satisfies assumptions (Al) and (A2)-(A4). For any step-size satisfying
m < m and effective step-size 7 := K ¢n,m, the updates of general aggregation satisfy
9

Elle” - "I <(1 - EDElla" - 4] + (2g)io”
+- 2 e @] - fah) + 37,

where &, is the drift caused by the local updates on the clients defined to be

1 K
&= T 2

=11

Efllyf s — "]

N
=1

Proof. We start with the observation that the updates (10) and (11) imply that the server update in round r can be written as
below (dropping the superscripts everywhere)

Az = _% ZMGS 9i(Yik—1), (18)
E[Az] = =5 >, BV fi(yik—1)]-

We adopt the convention that summations are always over k € [K| or ¢ € [N] unless otherwise stated. Expanding using
above observing, we proceed af]

.
Ellle + Az - 2*|”) =l - *|* - 7= DoV i) =)

. 1 :
+ P Eralllgrg D gilycisk — 1))

k€S
N 21 *
<l — @2~ S (Vilyin1) @ — @)
k,i
Ay
) 1 ﬁ20_2
2 - (a1 21,20 7
+ 17]Erfl[”KS Z sz(yz.,k71)||]+ KS
k€S
Az

We can directly apply Lemma 5 with h = f;, = y; ,—1,y = «* and z = « to the first term 4

27 N
A = N ;(Vfi(yi,mﬂvw —x)

< % . (fz(:l}*) - fz(CC) + ﬂHyi,k—l _ "BHz . %Hm B ?13*||2)
= ~2i(f(@) - f(@"") + Ll — 2*|*) + 287€.

4

4We use the notation E,_ [.] to mean conditioned on filtration r i.e. on all the randomness generated prior to round 7.

For the second term A3, we repeatedly apply the relaxed triangle inequality (Lemma 4)

4s = ﬁ?EMmKiS S Vhlyia) - Vi) + V@)

k,ieS

<UPE s O Viilwinor ~ Vi@ + 2PE g 3 Vi)

lc i€S i€S

=2
<o ZEr-l[Hwi(yi,k_l) - V@) + 25l 3 V) - V@)
) S
< S Bl —all) + 2RIV @)1 + (1 47 o S IV
= KN N SN £

i,k

_ _ S 47
< 2B + 8B + 1(f(@) - @) + (1 o) T
The last step used Assumption (G,B)-BGD assumption (14) that & Zi\il IV£i(z)||* < G? + 28B%(f(x) — f*). The

extra (1 — %) improvement we get is due to sampling the functions { f;} without replacement. Plugging back the bounds on
Al and Ag,

E, [z + Az —2*|?] <(1 - 5F Hw x| — (27 — 8877 (B* + 1)) (f(x) — f(a"))
+ (1 +73)267E + s” o+ (11— %)42 G2

The lemma now follows by observing that 837)(B% + 1) < 1 and that B > 0.

Lemma 8 (bounded drift). Suppose our functions satisfies assumptions (Al) and (A2)—(A4). Then the updates of general
aggregation for any step-size satisfying m; < m have bounded drift:

~20.2
3iE. < 2 Elf@) - f@) + s

2 + 18673 G>. (19)

Proof. If K = 1, the lemma trivially holds since y; o = « forall ¢ € [N] and &, = 0. Assume K > 2 here on. Recall that
the local update made on client ¢ is y; x = Yi k-1 — M9:(Yik—1). Then,
Elllyir — zl|*] =E[|yik-1 — = — mgi(Yin—1)|*]
<E[|yie-1 — @ — mV fi(yip—1)|*] + nic”
1
<(1- K7) Nyi k-1 — =] + Enf |V fi(yin—1)|I* + nic

~2

2
g
IV (i)lI2 + -

=(1- K%)E[”yi,kﬂ — w||2]

1 (;577 K K2¢2n3
1 2 2
<(1] — —— . _ .
<= g Bllwisn —)+ S IV A yian) - Vi@
2TV i) 2+
Prg K K2¢%n3
1 277252 2 2 2 o’
<(1——— k1 — —
1 2,r~]2 ﬁ20,2
<(1— ——— VYEll o1 — all?) 2,1

g9

In the above proof we separated the mean and the variance in the first inequality, then used the relaxed triangle inequality
with a = K 7 in the next inequality. Next equality uses the definition of 7, and the rest follow from the Lipschitzness of the
gradient. Unrolling the recursion above,

k— =2 =2 2

~2 2 1 2,'7}2 nc
Ef|yi.x — 24 19 ya1- < (@)|]? K.
i — I ; @I + 20~ e 1)) < (V@I + s

Averaging over ¢ and k, multiplying by 387 and then using Assumption Al,

387°0° 381"
Ko ~ K¢?

367, < %Z 1887% ||V fi(z)||* + < 1887°G? + +368%7° B(f(z) — f("))

The lemma now follows from our assumption that 8(B + 1)37 < 1.

Proof of Theorem I Adding the statements of Lemmas 7 and Lemmas 8, we get

Elllz + Azt) S(l—%ﬁ)E[IIw—m*IIQ]+%Sﬁ202+(1 S @) - 1))
+ 2B ()] ~ (@) + (g (1 o) + o (1= 50) +1857G7)

3 S N

¢22

Moving the f(x) — f(«*) term and dividing throughout by g, we get the following bound for any 7 < m

r— * 3] r— * 3 - *
E[f(z""")] — f(=)S5(1—7)||33 - ||2—5||CU —z*|?

2 S . 462 S i
+3n(a (1+¢)2 2)+T(1—N)+18577G2).

If 1+ = 0 (general convex), we can directly apply Lemma 2. Otherwise, by averaging using weights w, = (1 — %ﬁ)l_’".
and using the same weights to pick output £, we can simplify the above recursive bound to prove that for any 7 satisfying

~ 1
=S suEEp

Blf2"] ~ f(@*) <32 — 2| pexp(~ TuR)
—_————

=:d
202 S 8G2 S
+ ((1 #n 2)+T(1*N))
7%(365G?)
N——"

=iCc2

Now, the choice of 7j = min{ 12 mdx(#’gg Rd/c)) T 312)8 5} yields the desired rate. The proof of the non-convex case is

very similar and also relies on Lemma 2.

9.5. Lower bound for general aggregation
We first formalize the class of algorithms we look at before proving out lower bound.
A6 We assume that general aggregation is run with n, = 1, K’ > 1, and arbitrary possibly adaptive step-sizes {71, ---nr}

are used with 7, < % and fixed within a round for all clients. Further, the server update is a convex combination of the client
updates with non-adaptive weights.

Note that we only prove the lower bound here for 1y = 1. In fact, bu taking 7, infinitely large and scaling n; o< KLng such
that the effective step size 7 = n;7,K remains constant, general aggregation reduces to the simple large batch SGD method.
Hence, proving a lower bound for arbitrary 7, is not possible, but also is of questionable relevance. Further, note that when
0?2 = 0, the upper bound in Theorem V uses 7, = 1 and hence the lower bound serves to show that our analysis is tight.

Below we state a more formal version of Theorem II.

Theorem II. For any positive constants G, i, there exists . -strongly convex functions satisfying Al for which that the output
of general aggregation satisfying A6 has the error for any r > 1:

GQ

fla") = f(z*) = Q(min(f(z%) - f(z*), R

) (20)
Proof. Consider the following simple one-dimensional functions for any given p and G-

{ filz) = pa® + G,
fa(z) = —Gu,

with f(z) = 3(f1(z) + f2(x)) = 422 and optimum at z = 0. Clearly f is y-strongly convex and further f; and f, satisfy
Al with B = 3. Note that we chose f5 to be a linear function (not strongly convex) to simplify computations. The calculations
make here can be extended with slightly more work for (f; = La? — Gu).

Let us start general aggregation from 2° > 0. A single local update for f; and f5 in round » > 1 is respectively

y1 =y — 0 (2ur +G)
Y2 =y2+n.G

Then, straightforward computations show that the update at the end of round 7 is of the following form for some averaging
weight o € [0, 1]
K-1
2" =" (1=)1 = 2um) " +) + 0. G Y (@ — (1= a)(1 = 2pm,)7).
7=0
Since « was picked obliviously, we can assume that o < 0.5. If indeed o > 0.5, we can swap the definitions of f; and f5
and the sign of 2°. With this, we can simplify as

K—-1
r r—1 (1 B 2:u777“)K +1 nTG o . T
2 SR S (1 (1 2
T]GK_l
r—1 K T -
2" (1 =2um)" + =5 ;(1*(1*2;”%))-

Observe that in the above expression, the right hand side is increasing with 7,. — this represents the effect of the client drift
and increases the error as the step-size increases. The left hand side decreases with 7,. — this is the usual convergence observed
due to taking gradient steps. The rest of the proof is to show that even with a careful balancing of the two terms, the effect of
G cannot be removed. Lemma 9 performs exactly such a computation to prove that for any r > 1,

"> i —).
2" > cmin(xg MR)
We finish the proof by noting that f(z") = 4§ (z")?.

Lemma9. Suppose that forallr > 1,7, < i and the following is true:

TG K-—1
2" > a1 — 2um) K+ 777 31— (1 2m,)"). @1)
=0

Then, there exists a constants ¢ > 0 such that for any sequence of step-size {n"}

2" > emin(xg, —
> eminao. +2)
Proof. Define ~, = un, R(K — 1). Such a ~,. exists and is positive since K > 2. Then, +, satisfies

K—-1 2"}/7 K—-1 ’YT»
1—2un) 2z =(1— —=")7 < ERAY

we then have

o=
a” > 2" N1 - 2un,) K + TT (1= (1=2un,)")
7=0
=
> xr_l(l - 2/”77‘)K + 72 Z (1 - (1 - 2/-”]r)7)
r=(K—1)/2
.G .
> (1= 2um) + T (1L~ exp(= 1))

The second inequality follows because 7, < ﬁ implies that (1 — (1 — 2un,)7) is always positive. If 7, > £, then we have

1

a constant ¢; € (0, 53) which satisfies

x> —ch.
o

On the other hand, if 7, < %, we have a tighter inequality

K—-1

27, _ .
(1—2um,) 7 = (1— =) <12

R(K -1)
implying that

%G
4uR’

Ay
R

_ 27, G _
> Tll_ K T > rll_
vz (- g o) Tag 2|

)+ (22)
The last step used Bernoulli’s inequality and the fact that K — 1 < K/2 for K > 2. Observe that in the above expression,
the right hand side is increasing with ~,. —this represents the effect of the client drift and increases the error as the step-size
increases. The left hand side decreases with ~y,. —this is the usual convergence observed due to taking gradient steps. The rest
of the proof is to show that even with a careful balancing of the two terms, the effect of G cannot be removed.
Suppose that all rounds after g > 0 have a small step-size i.e. v, < R/8 for all » > ry and hence satisfies . Then we
will prove via induction that

G
T > : 1 _ _— \r—ro To
x” > min((2R) , 7256;1}2)
For r = r¢, (0.5) is trivially satisfied. Now for > rq,
— 4, 'YQG . _ 1 G . G
s T 1 1— T > r—1 = — 0 .
vhzat (1=)+ g 2 min@ 1 = o) ope) = minlena™ o2e)

The first step is because of (22)) and the last step uses the induction hypothesis. The second step considers two cases for 7,
either v, < % and (1 — 55%) > (1 — 5%), or 2 > &;. Finally note that ¢" > 1 using Bernoulli’s inequality. We have hence
proved

1 G

R > : 7o
vtz min(ge”, o 7)
Now suppose v, > %. Then (9.5) implies that 27 > % for some constant ¢ > 0. If instead no such ro > 1 exists, R then
we can set rg = 0. Now finally observe that the previous proof did not make any assumption on R, and in fact the inequality

stated above holds for all » > 1.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]
(12]

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient methods under
the polyak-ojasiewicz condition. arXiv e-prints, 2016.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.

Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning,
pages 5132-5143. PMLR, 2020.

A. Kulunchakov and J. Mairal. Estimate sequences for stochastic composite optimization: Variance reduction, accelera-
tion, and robustness to noise. 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mixture models of topic correlations. In Proceedings
of the 23rd international conference on Machine learning, pages 577-584, 2006.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient

learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273—1282. PMLR,
2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takac¢, and Peter Richtarik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Kone¢ny, Sanjiv Kumar, and
H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with delayed gradients and
compressed communication. 2019.

S. Vaswani. Fast and faster convergence of sgd for over-parameterized models and an accelerated perceptron. 2018.
Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni.

Bayesian nonparametric federated learning of neural networks. In International Conference on Machine Learning, pages
7252-7261. PMLR, 2019.

	. More details about parameter sensitivity
	. Data distribution
	. Federated optimizer with elastic aggregation
	. The computational overhead of parameter sensitivity
	. Communication overhead
	. Compare to prior works in pros/cons
	. Technicalities
	. Additional definitions
	. Some technical lemmas

	. Properties of convex functions
	. Convergence of elastic aggregation
	. elastic aggregation
	. Bounding heterogeneity
	. Rates of convergence
	. Proof of convergence
	. Lower bound for general aggregation

