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Appendix

https://github.com/chenfengye/motion-latent-diffusion

This appendix provides more qualitative results (Sec. A), several additional experiments (Sec. B) on the components of
motion latent diffusion (MLD) models, evaluations of inference time (Sec. C), visualization of latent space (Sec. D), evalua-
tions on hyperparameters (Sec. E), user study (Sec. F), details of motion representations (Sec. G), implementation details of
MLD models (Sec. H) and metric definitions (Sec. I).

Video. We have provided supplemental videos in Project Page. In these supplemental videos, we show 1) comparisons of
text-based motion generation, 2) comparisons of action-conditional motion generation, and 3) more samples of unconditional
generation. We suggest the reader watch this video for dynamic motion results.

Code is available on GitHub Page. We provide the process of the training and evaluation of MLD models, the pre-trained
model files, the demo script, and example results.

A. Qualitative Results
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Figure 7. The comparison of the state-of-the-art methods on action-conditional motion synthesis task. All provided methods are under the
same training and inference setting on HumanAct12 dataset [10]. We generate three motions for each action label. The results demonstrate
that our generations correspond better to the action label and have richer diversity.
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“a person doing jumping jacks.” “a person raised arms up 
and pull them down”

“ a person walks forward, turns, 
then sits, then stands and walks back”

“ a person who is walking moves 
forward taking six confident strides.”

“ the person is walking 
out a medium speed.”

“someone who is 
waiving to a person”

“a person lifts up their 
left arm to the side.”

“ person jumps forwards and 
turns left in mid air.”

“ a person jogs straight 
forward.”

“ a person raises left hand, waves with hand, 
and then places the hand back at side. ”

“ a person gets down on all fours 
and starting crawling around.”

“ the person was doing a cool walk.”

“ a person walks in a 
circle to their right.”

“ walking forward with 
legs wide apart.”

Figure 8. More samples from our best model for text-to-motion synthesis, MLD-1, which was trained on the HumanML3D dataset. Samples
generated with text prompts of the test set. We recommend the supplemental video to see these motion results.



B. Additional Experiments
We conduct several experiments to continue the evaluations of MLD models. We first study the influence of language mod-

els τwθ and the shape of text embedding on motion generations. Then, we evaluate the effectiveness of long skip connections
for motion diffusion models. We finally study the importance of regularization on motion latent space.

B.1. Evaluation of Language Models τwθ
We experiment with different language models, CLIP [52] and BERT [10]. Inspired by Stable Diffusion [56], we leverage

the hidden state of CLIP to generate word-wise tokens and explore its effects. The comparisons are listed in Tab. 7. CLIP
is more suited to our task compared to BERT, and the word-wise text tokens are competitive with the single token, however,
lower the computation efficiency of diffusion models. Therefore, we choose CLIP and a single text token for our models.

Models Text Encoder Embeddings R Precision FID↓ MM Dist↓ Diversity→ MModality↑
τwθ Shape Top 3↑

Real - - 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MLD-1 BERT [10] 1× 256 0.725±.002 0.553±.020 3.530±.011 9.697±.080 3.360±.118

MLD-1 CLIP [52] 1× 256 0.769±.002 0.446±.011 3.227±.010 9.772±.071 2.413±.072

MLD-1 CLIP [52] 77× 256 0.737±.002 0.422±.012 3.436±.010 9.840±.082 2.799±.107

Table 7. Quantitative comparison of the employed language models. Here we set batch size to 500 and only change the text encoder τwθ .

B.2. Effectiveness of Long Skip Connection

We have demonstrated the effectiveness of skip connection, especially on diffusion models in Tab. 5. Here we analyze
its influence on the training of diffusion stage. As shown in Fig. 9, the model with long skip connection not only achieves
higher performance but also provides faster convergence compared to the other one. The results suggest leveraging long skip
connections for iterative motion diffusion models.
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Figure 9. The evaluation on long skip connection on diffusion training stage. Two sub-figures are under the same training process and
evaluated on the test set of HumanML3D. Training steps indicate the epoch number.

B.3. Diffusion on Autoencoder or VAE

We study the importance of regularization on motion latent space. The regularized latent space provides stronger genera-
tion ability and supports the latent diffusion models as demonstrated:

Method Reconstruction Generation

MPJPE ↓ PAMPJPE↓ ACCL↓ FID↓ DIV→
Autoencoder 38.5 28.2 5.8 0.156 9.628
VAE 14.7 8.9 5.1 0.017 9.554

Method R Precision FID↓ MM Dist↓ Diversity→ MModality↑Top 3↑
MLD w/ Autoencoder 0.581±.003 5.033±.061 4.600±.018 7.953±.083 3.754±.111

MLD w/ VAE 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

Table 8. Evaluation of autoencoder (without Kullback-Leibler regularization) and VAE model on motion generations.



B.4. Prediction of Denoising

We compare predicting the denoised latent vector z0 directly instead of ε in the denoising process. Tab. 9 shows that the
latter performs better, which verifies the proposal from DDPM [23].

Methods R Precision ↑ FID↓ MM Dist↓ Diversity→ MModality↑
Top 1 Top 2 Top 3

MLD-1 (z0) 0.447±.002 0.633±.002 0.734±.002 0.513±.011 3.384±.008 9.181±.065 0.735±.055

MLD-1 (ε) 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

Table 9. Comparison of text-to-motion. (cf. Tab. 1 for details.)

C. Inference time
We provide a detailed ablation study with DDIM below. In Tab. 10, MLD reduces the computational cost of diffusion

models, which is the main reason for faster inference. The iterations of diffusion further widen the gap in computational cost.
Please note the bad FID of MDM with DDIM is mentioned in their GitHub issues #76.

Methods

Total Inference Time (s) ↓ FLOPs (G) ↓

Parameter

FID ↓
DDIM DDPM DDIM DDPM DDIM DDPM

50 100 200 1000 50 100 200 1000 50 100 200 1000

MDM 225.28 456.70 911.36 4546.23 597.97 1195.94 2391.89 11959.44 x ∈ R196×512 7.334 5.990 5.936 0.544
MLD 10.24 16.38 28.67 148.97 29.86 33.12 39.61 91.60 z ∈ R1×256 0.473 0.426 0.432 0.568

Table 10. Evaluation of inference time costs on text-to-motion: we evaluate the total inference time to generate 2048 motion clips with
different diffusion schedules, floating point operations (FLOPs) counted by THOP library, the size of diffusion input, and FID.

D. Latent space visualization
We provide the visualizations of the t-SNE results on the latent space in Fig. 10 to demonstrate how latent space evolves

during the diffusion process with different actions. From left to right, it shows the evolved latent codes during the inference
of diffusion models.
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Figure 10. Visualization of the t-SNE results on evolved latent codes ẑt during the reverse diffusion process (inference) on action-to-motion
task. t is the diffusion step but ordered in the forward diffusion trajectory. ẑt=49 is the initial random noise. ẑt=0 is our prediction. We
sample 30 motions for each action label.

E. Evaluation of Hyperparameters
Here, we present two different experiments of text-to-motion on HumanML3D [17]. The first experiment is to change the

dropout p and scale in classifier-free diffusion guidance [24]. In Tab. 11, we find that by changing dropout p from 0.1 to 0.25,
the text correspondences (R Precision) become worse but the motion quality (FID) gets better. It is the same as changing
scale s range from 7.5 to 2.5. Besides, some settings like (0.25, 7.5) achieve the best FID of 0.229, but we still suggest
(0.1, 7.5) as dropout and scale (p, s) for MLD models (Sec. 4) overall metrics.



Next, in Tab. 12, we experiment with batch sizes of 32, 64, 128, 256 and 512 under 8 Tesla V100 each with 32 GPU
memory. We set it to 64 in our other experiments.

Models Classifier-free R Precision FID↓ MM Dist↓ Diversity→ MModality↑
Dropout Scale Top 3↑

Real - - 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MLD-1 p = 0.05 s = 7.5 0.766±.002 0.574±.013 3.237±.007 9.664±.069 2.433±.074

MLD-1 p = 0.10 s = 7.5 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MLD-1 p = 0.15 s = 7.5 0.765±.002 0.311±.009 3.209±.007 9.649±.065 2.525±.070

MLD-1 p = 0.20 s = 7.5 0.761±.002 0.279±.011 3.243±.009 9.632±.082 2.651±.080

MLD-1 p = 0.25 s = 7.5 0.757±.002 0.229±.010 3.260±.008 9.649±.069 2.685±.084

MLD-1 p = 0.30 s = 7.5 0.759±.002 0.289±.010 3.249±.008 9.670±.073 2.650±.082

MLD-1 p = 0.10 s = 1.5 0.648±.002 0.401±.019 3.857±.009 9.263±.056 3.914±.115

MLD-1 p = 0.10 s = 2.5 0.720±.002 0.350±.013 3.441±.010 9.549±.058 3.201±.098

MLD-1 p = 0.10 s = 3.5 0.745±.002 0.358±.011 3.299±.009 9.639±.065 2.890±.087

MLD-1 p = 0.10 s = 4.5 0.758±.002 0.375±.011 3.232±.009 9.676±.069 2.701±.078

MLD-1 p = 0.10 s = 5.5 0.764±.002 0.396±.011 3.202±.010 9.681±.072 2.577±.076

MLD-1 p = 0.10 s = 6.5 0.767±.002 0.424±.011 3.191±.009 9.658±.072 2.498±.074

MLD-1 p = 0.10 s = 7.5 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MLD-1 p = 0.10 s = 8.5 0.768±.002 0.504±.012 3.207±.009 9.604±.073 2.413±.072

MLD-1 p = 0.10 s = 9.5 0.766±.001 0.555±.012 3.227±.010 9.567±.072 2.394±.069

Table 11. Classifier-free Diffusion Guidance: We study the influence of its hyperparameters, dropout p and scale s on text-to-motion.

Models Batch Size R Precision FID↓ MM Dist↓ Diversity→ MModality↑Top 3↑
Real - 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

MLD-1 32 0.761±.003 0.445±.012 3.243±.010 9.751±.086 2.581±.070

MLD-1 64 0.772±.002 0.473±.013 3.196±.010 9.724±.082 2.413±.079

MLD-1 128 0.771±.002 0.421±.013 3.187±.008 9.691±.080 2.370±.078

MLD-1 256 0.770±.002 0.423±.010 3.211±.007 9.800±.070 2.401±.074

MLD-1 512 0.769±.002 0.446±.011 3.227±.010 9.772±.071 2.413±.072

Table 12. Batch Size: We explore the evaluation of the batch size. We find the results are close and suggest 64 and 128 in this task.

F. User Study
For the pairwise comparisons of the user study presented in Fig. 11, we use the force-choice paradigm to ask “Which of the

two motions is more realistic?” and “which of the two motions corresponds better to the text prompt?”. The provided motions
are generated from 30 text descriptions, which are randomly generated from the test set of HumanML3D [17] dataset. We
invite 20 users and provide three comparisons, ours and MDM [69], ours and T2M [16], ours and real motions from the
dataset. Our MLD was preferred over the other state-of-the-art methods and even competitive to the ground troth motions.
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Figure 11. User Study: Each bar indicates the preference rate of MLD over other methods. The red line indicates the 50%. Please refer to
the supplemental video for the comparisons of dynamic motion results.



G. Motion Representations
Four relevant motion representations are summarized:
HumanML3D Format [17] proposes a motion representation x1:L inspired by motion features in character control [66,

45, 65]. This redundant representation is quite suited to neural models, particularly variational autoencoders. Specifically,
the i-th pose xi is defined by a tuple of root angular velocity ṙa ∈ R along Y-axis, root linear velocities (ṙx, ṙz ∈ R) on
XZ-plane, root height ry ∈ R, local joints positions jp ∈ R3Nj , velocities jv ∈ R3Nj and rotations jr ∈ R6Nj in root space,
and binary foot-ground contact features cf ∈ R4 by thresholding the heel and toe joint velocities, where Nj denotes the joint
number, giving:

xi = {ṙa, ṙx, ṙz, ry, jp, jv, jr, cf}. (5)

SMPL-based Format [40]. The most popular parametric human model, SMPL [40] and its variants [57, 44] propose
motion parameters θ and shape parameters β. θ ∈ R3×23+3 is rotation vectors for 23 joints and a root, and β are the weights
for linear blended shapes. This representation is popular in markerless motion capture [21, 8, 31]. By involving the global
translation r, the representation is formulated as:

xi = {r, θ, β}. (6)

MMM Format [67]. Master Motor Map (MMM) representations propose joints angle parameters by adopting a uniform
skeleton structure with 50 DoFs. And most recent methods [2, 13, 47] on text-to-motion task followed preprocess procedure
in [25] which transform joint rotation angles to J = 21 joints XYZ coordinates, giving pm ∈ R3J , and global trajectory
troot for the root joint. The preprocessed representation can be formulated as

xi = {pm, troot}. (7)

Latent Format [40]. Latent representations are widely used in neural models [46, 47, 19, 9]. We recognize it as motion
representation in latent space. By leveraging VAE models, latent vectors can represent plausible motions as:

x̂1:L = D(z), z = E(x1:L) (8)

H. Details on Motion Latent Diffusion Models
H.1. Details Information on Variational Autoencoder Models

We take HumanML3D [17] and its motion representation (Sec. G) as an example here to explain our loss details of
Variational Autoencoder Models V . The motion x1:L includes joint features and is supervised with data term by mean
squared error:

Ldata =
∥∥x1:L −D(E(x1:L))∥∥2 . (9)

To regularize latent space as a standard variational autoencoder [30], we employ a Kullback-Leibler term between
q(z|x1:L) = N (z; Eµ, Eσ2) and a standard Gaussion distribution N (z; 0, 1). The full training loss of the VAE model V
follows:

LV = Ldata(x1:L,D(E(x1:L))) + λregLreg(x1:L; E ,D), (10)

where λreg is a low weight to control the regularization. The KIT [48], HumanAct12 [19] and UESTC [26] dataset processed
by [47, 46] also supports SMPL-based [40] motion representation. Here we list the loss terms for this representation. The
data term formulates as followed:

Ldata =

L∑
i=1

∥∥ri − r̂i∥∥
2
+

L∑
i=1

∥∥∥θi − θ̂i∥∥∥
2
+
∥∥∥β − β̂∥∥∥

2
. (11)

Here the motion is x1:L = {ri, θi, β}Li=1, which includes global translation ri, pose parameter θi and shape parameter β of
the i-th frame. To enhance the full-body supervision, the reconstruction term on the SMPL vertices follows:

Lmesh =

L∑
i=1

∥∥∥Vi −M(r̂i, θ̂i, β̂i)
∥∥∥2 , (12)



where the body reconstruction function M(·) is from the differentiable SMPL layer, while the vertices Vi are calculated with
the ground truth motion parameters using the same layer. The reconstruction loss builds global supervision on almost all
predicted parameters {rt, θt, β} and shows a reliable supervision [46] for motion generation. The full objective on SMPL-
based motion representation reads:

LV = Ldata + λmeshLmesh + λregLreg. (13)

where λmesh is the weight to enhance the supervision on the full-body vertices. Besides, the regularization term is the
same as the Kullback-Leibler term in Eq. (11). In practice, the shape parameters, as part of global motion features, increase
the complexity of motion generation and influence joint positions. We finally utilize the objective of Eq. (11) to train our
text-based models and Eq. (13) to train action-based models in comparisons and evaluations.

H.2. Network Architectures

The details of network architecture are shown as Fig. 12, our MLD comprises three main components, motion encoder E ,
motion decoder D and latent denoiser εθ. Please refer to the following figure and Tab. 13 for more details.
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Figure 12. Network architecture of our conditional MLD. We explain each component in its right bottom part and the loss terms in Sec. H.1.

H.3. Implementation Details

For the experiments on text-to-motion, action-to-motion, and unconditional motion synthesis, we implement MLDs with
various latent shapes as follows. Specifically, MLD-7 works best in evaluating VAE models (Tab. 4), and MLD-1 wins these
generation tasks (Tabs. 1, 2, 3 and 6). In other words, MLD-7 wins the first training stage for the VAE part, while MLD-
1 wins the second for the diffusion part. We thought MLD-7 should perform better than MLD-1 in several tasks, but the
results differ. The main reason for this downgrade of a larger latent size, we believe, is the small amount of training data.
HumanML3D only includes 15k motion sequences, much smaller than billions of images in image generation. MLD-7 could
work better when the motion data amount reaches the million level.



MLD-1 MLD-2 MLD-5 MLD-7 MLD-10

z-shape 1× 256 2× 256 5× 256 7× 256 10× 256
Training Diffusion steps 1000 1000 1000 1000 1000
Inference Diffusion steps 50 50 50 50 50
Noise Schedule scaled linear scaled linear scaled linear scaled linear scaled linear
Denoiser Heads Number 4 4 4 4 4
Denoiser Transformer Layers 9 9 9 9 9
Conditioning concat concat concat concat concat

Embedding Dimension 256 256 256 256 256
VAE Heads Number 4 4 4 4 4
VAE Transformer Layers 9 9 9 9 9

Model Size (w/o clip) 26.9M 26.9M 26.9M 26.9M 26.9M
Diffusino Batch Size 64 64 64 64 64
Diffusion Epochs 2000 2200 2400 2600 2800
VAE Batch Size 128 128 128 128 128
VAE Epochs 4000 4500 5000 5500 6000
Learning Rate 1e-4 1e-4 1e-4 1e-4 1e-4

Table 13. Hyperparameters for the conditional MLDs in experiments. We train these models on 8 Tesla V100. The smaller latent shape
lowers the computational requirements and provides faster inference.

I. Metric Definitions
We provide more details of evaluation metrics in Sec. 4.1 as follows.
Motion Quality. Frechet Inception Distance (FID) is our principal metric to evaluate the distribution similarity between

generated and real motions, calculated with the suitable feature extractor [19, 46, 16] for each dataset. Besides, to evaluate
the motion reconstruction error of VAEs, we use popular metrics in motion capture [31, 8, 71], MPJPE, and PAMPJPE [14]
for global and local errors in millimeter, Acceleration Error (ACCL) for the quality on temporal.

Generation Diversity. Following [19, 18], we use Diversity (DIV) and MultiModality (MM) to measure the motion
variance across the whole set and the generated motion diversity within each text input separately. Here we take the text-to-
motion task as an example to explain the calculation steps and for other tasks the operations are similar. To evaluate Diversity,
all generated motions are randomly sampled to two subsets of the same size Xd with motion feature vectors {x1, .., xXd

}
and {x′

1, .., x
′

Xd
} respectively. Then diversity is formalized as:

DIV =
1

Xd

Xd∑
i=1

||xi − x
′

i||.

To evaluate MultiModality, a set of text descriptions with size Jm is randomly sampled from all descriptions. Then two
subsets of the same size Xm are randomly sampled from all motions generated by j-th text descriptions, with motion feature
vectors {xj,1, .., xj,Xm

} and {x′

j,1, .., x
′

j,Xm
} respectively. The multimodality is calculated as:

MM =
1

Jm ×Xm

Jm∑
j=1

Xm∑
i=1

||xj,i − x
′

j,i||.

Condition Matching. For the text-to-motion task, [16] provides motion/text feature extractors to produce geometri-
cally closed features for matched text-motion pairs, and vice versa. Under this feature space, motion-retrieval precision (R
Precision) first mix generated motion with 31 mismatched motions and then calculates the text-motion top-1/2/3 matching
accuracy, and Multi-modal Distance (MM Dist) that calculates the distance between generated motions and text. For action-
to-motion, for each dataset a pretrained recognition model [19, 46] is used to calculate the average motion Accuracy (ACC)
for action categories.

Time Costs. To evaluate the computing efficiency of diffusion models, especially the inference efficiency, we propose
Average Inference Time per Sentence (AITS) measured in seconds. In our case, we calculate AITS (cf. Fig. 6) on the test set
of HumanML3D [17], set the batch size to one, and ignore the time cost for model and dataset loading parts.




