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A. Appendix
A.1. Details of Datasets

We provide the details of datasets in the following:

* Homophily Datasets

— Citeseer, Pubmed, Cora [9]: For the benchmark
citation datasets, nodes correspond to papers,
edges correspond to citation links, the sparse
bag-of-words are the features, and each node’s
label represents the paper’s topic.

* Heterophily Datasets

— Texas, Wisconsin, Cornell [11]: Nodes and edges
represent the web pages and hyperlinks captured
from the computer science departments of these
universities in the WebKB dataset. Nodes’ fea-
tures are bag-of-word representations of contents
on these web pages. Each node is labeled into
five categories: student, project, course, staff,
and faculty.

— Squirrel, Chameleon [11]: Chameleon and
Squirrel are web pages extracted from different
topics in Wikipedia. Nodes and edges denote the
web pages and hyperlinks among them, respec-
tively, and informative nouns in the web pages
are employed to construct the node features in
the bag-of-word form. Webpages are labeled in
terms of the average monthly traffic level.

— Actor [11]: The actor network contains the co-
occurrences of actors in films, which describes
the complex relationships among films, directors,
actors and writers. In this network, nodes and
edges represent actors and their co-occurrences
in films, respectively. The actor’s Wikipedia page
is used to extract features and node labels.

» Large-scale Datasets

— Flickr, Reddit [6, 15]: Flickr and Reddit are
inductive datasets for multiclass categorization.
The goal of Reddit is to predict online post com-
munities based on user comments. The task
of Flickr is to classify the categories of images
based on their description and common charac-
teristics of online photographs.

— Products [7]: The Products dataset is a large-
scale Amazon product co-purchasing network in
a transductive setting. Nodes represent prod-
ucts sold in Amazon, edges indicate the prod-
ucts purchased together, and features are 100-
dimensional product descriptions after Principal
Component Analysis. Labels are the category of
products.

A.2. Implementation Details

Hyper-parameters. For HopGNN, we search the hyper-
parameters, including learning rate from [0.01, 0.001,
0.005], weight decay from [0, 5e-4, Se-5, 5e-6], dropout
rate from [0.2, 0.4, 0.5, 0.6], o from [0.01, 0.1, 0.5, 0.8] and
A from [1e-4, 5e-4] via validation sets of each dataset. For
other baselines, we search the layers/hops from [2, 8, 16,
32] and fix the hidden dimensions as 128. The search space
of other hyper-parameters, such as learning rate, weight de-
cay, and dropout, is the same as that of HopGNN.

Hardware and Environment. We run our experiments
on a single machine with Intel Xeon CPUs (Gold 5120 @
2.20GHz), one NVIDIA Tesla V100 GPU (32GB of mem-
ory) and 512GB DDR4 memory. We use PyTorch 1.11.0
with CUDA 10.2 to train the model on GPUs.

Throughput and Memory. For fairness, we set the hidden
dimension to 256 and control the batchsize as 3000 across
different models on the Products dataset. We report the
hardware throughput and activation usage-based on [3, 5].
The throughput measures how many times each model can
complete training steps within a second. We measure the
activation memory using forch.cuda.memory_allocated.



Table 1. Mean test accuracy = stdev. The best performance is highlighted. { denotes the results obtained from previous works [

, 17].

| Texas Wisconsin Actor Squirrel Chameleon Cornell |  Citeseer Pubmed Cora | Avg
GCN+JK} 66.49+6.64 T74.31+6.43 34.18+0.85 40.454+1.61 63.42+2.00 64.59+8.68 | 74.51+1.75 88.4140.45 86.79+0.92 | 65.79
GCN-Chebyf | 77.30+4.07 79.41+4.46 34.11+1.09 43.86+1.64 55.2442.76 74.32+7.46 | 75.824+1.53 88.7240.55 86.76+0.95 | 68.39
MixHopt 77.84+7.73 T75.884+4.90 32.2242.34 43.8041.48 60.50+2.53 73.514+6.34 | 76.264+1.33 85.314+0.61 87.61+0.85 | 68.21
GEOM i 67.57 64.12 31.63 38.14 60.90 60.81 77.99 90.05 85.27 64.05
FAGCN 78.114+5.01 81.56+4.64 35.41+1.18 42.43+2.11 56.3143.22 76.12+7.65 | 74.864+2.42 85.74+0.36 83.21+2.04 | 68.18
DAGNN 70.27+4.93 71.76+5.25 35.51+1.10 30.29+2.23 45.9242.30 73.51+7.18| 76.44+1.97 89.37+0.52 86.82+1.67 | 64.43
HopGNN 81.354+4.31 84.96+4.11 36.66+1.39 60.95+1.65 70.13+1.39 83.70+6.52 | 76.164+1.53 89.98+0.39 87.12+1.35 | 74.56
HopGNN+ 82.97+5.12 85.69+5.43 37.09+0.97 64.23+1.33 71.2141.45 84.05+4.48 | 76.69+1.56 90.28+0.42 87.57+1.33 | 75.53
HopGNN+SCL | 81.6547.47 84.37+4.91 36.72+1.05 61.42+1.98 70.454+1.03 84.32+6.71 | 76.594+1.51 90.01+0.29 87.28+1.71|74.76
A.3. More Experiment Results
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GNNs: Geom-GCN [1 1] and FAGCN [2] and 3) decoupled @ / | Flickr
GNN: DAGNN [10]. However, their average performance Feo [ L—1 + T ¥
on nine datasets is less than 70, indicating that they have
been shown to be outperformed by the SOTA methods. 50
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Supervised Contrastive Learning Objective.
cussed in [16], the supervised contrastive loss [8] (SCL)
may help to regularize the feature space and make it
more discriminative, i.e., minimizing the SCL is equivalent
to minimizing the class-conditional entropy H(H|Y) and
maximizing the feature entropy H(H). Therefore, it can
also be used to enhance the discriminative ability of hop in-
teraction, and we provide the results of HopGNN with SCL
in Table 1. Formaly, the SCL objective can be defined as:

Liina = Lcg + ALscL,
1
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where i € Ip = {1...2b} is the index of an arbitrary
augmented sample within a training batch (size=b), and
A@i) = I\{i}. P(i) = {p€ A(%) : yp =y} is the set
of indices of all positives that share same label y in a multi-
view batch distinct from ¢, and | P(4)| is its cardinality.

As shown in the last row of Table 1, the result demon-
strates that the SCL can also improve the performance of
HopGNN and is comparable with HopGNN+, which vali-
dates the compatibility of the HopGNN framework to dif-
ferent SSL objectives. However, the complexity of SCL is
O(N?) in a batch due to the instance discrimination task.
Therefore, the SCL is not as scalable as the feature-level
SSL used in HopGNN+.

The Effects of Interaction Layers. We test the effects
of different interaction layers in HopGNN under various

Interaction Layers

Figure 1. Classification accuracy with different interaction layers.

datasets, including Cora, Citeseer, and Pubmed as ho-
mophily examples; Chameleon and Squirrel as heterophily
examples; Flickr and Products as large-scale examples. In
Figure 1, we observe that HopGNN achieves competitive
results using two interaction layers in most cases. Thus, we
adopt the default layers of hop interaction as two. Com-
pared with homophily datasets, increasing the layers of hop
interaction would remarkably boost the performance of het-
erophily datasets. The reason may be that such high-order
hop interactions may capture the co-occurrence pattern of
multi-hop neighbors, which contain the discriminative clues
for heterophily.

Training Efficiency. In Figure 2, we have added experi-
ments with representative baselines. HopGNN converges
most quickly and performs best empirically, which also val-
idates that our hop interaction framework can achieve a bet-
ter trade-off between effectiveness and efficiency.
Visualization of Representation. To qualitatively investi-
gate the effectiveness of the learned feature representation
of nodes, we provide a visualization of the t-SNE [12] for
the last layer features of GCN (node interaction), SIGN (de-
coupled), and HopGNN (hop interaction) on the Chameleon
(Figure 3) and Cora (Figure 4). Compared with GCN (first
row), the SIGN (second row) and HopGNN (last row) are
both robust when increasing layers under the Chameleon
and Cora. Moreover, the representation of HopGNN ex-
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Figure 2. Empirical efficiency study on the largest Product dataset:
x-axis shows the total training time (previous 250 seconds), y-axis
is the accuracy on the test set.

hibits more discernible clustering in Chameleon. Note that
these clusters correspond to the five classes of the dataset,
verifying the better discriminative power of HopGNN under
different layers in Heterophily.
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Figure 3. t-SNE visualization of node representations derived by different numbers of layers/hops of models on Chameleon. Colors
represent node classes, and the number in the bracket indicates the layers/hops. Note that these clusters correspond to the five classes,
indicating that HopGNN has better discriminative power under different layers in heterophily.
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Figure 4. t-SNE visualization of node representations derived by different numbers of layers/hops of models on Cora. Compared with
GCN, the representation of both SIGN and HopGNN are discriminative when increasing layers in a homophily scenario. However, due to
the simplicity of homophily datasets, the SIGN and HopGNN achieve similar results.



