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In our supplementary materials, we provide additional
quantitative and qualitative results of novel view synthe-
sis and novel pose synthesis as shown in Fig 2, Tab 2,
and Tab 3. More video demos and code are available at
https://github.com/JanaldoChen/GM-NeRF.
We highly recommend watching the provided video demos
to get a better understanding. Additionally, we provide ex-
tra details as follows: 1) network architecture details (Ap-
pendix A); 2) more explanation about normal regularization
(Appendix B 3) additional results on Genebody [2] (Ap-
pendix C); 4) more ablation experiments (Appendix D).

A. Network Architecture
Image Feature Extraction Network. In order to ade-
quately exploit the m calibrated multi-view images, we de-
ploy a U-Net-like architecture as our image feature extrac-
tion network to extract their features with shared weights.
Specifically, the encoder of our image extraction network
is pretrained ResNet34 [5] on Imagenet [9]. We remove
layer4 and max-pooling. As shown in Tab. 1, we take one
input image of size 512×512×3 as an example to describe
the network details.

Figure 1. 2D Neural rendering architecture.

2D Neural Rendering Network. It is memory intensive
to render a whole image using volume rendering, therefore
we take a hybrid rendering approach of 3D volume render-
ing and 2D neural rendering. Specifically, we first use vol-

Layer Input (ID : HWC ) Output (ID : HWC )

Conv, 64, k=7, s=2 0 : 512× 512× 3 1 : 256× 256× 64
Residual layer 1 1 : 256× 256× 64 2 : 256× 256× 64
Residual layer 2 2 : 256× 256× 64 3 : 128× 128× 128
Residual layer 3 3 : 128× 128× 128 4 : 64× 64× 256
Upconv, 128, k=3, f=2 4 : 64× 64× 256 5 : 128× 128× 128
iConv, 128, k=3, s=1 3 © 5: 128× 128× 256 6 : 128× 128× 128
Upconv, 64, k=3, f=2 6 : 128× 128× 128 7 : 256× 256× 64
iConv, 64, k=3, s=1 2 © 7: 256× 256× 128 8 : 256× 256× 64
iConv, 64, k=3, s=1 1 © 8: 256× 256× 128 9 : 256× 256× 64
Conv, 64, k=1, s=1 9 : 256× 256× 64 10 : 256× 256× 64

Table 1. Image feature extraction network. ’Conv’ stands for
a sequence of operations: convolution (k is kernal size and s is
stride), rectified linear units (ReLU) and Batch Normalization [6].
’iConv’ replace the Batch Normalization with Instance Normaliza-
tion [11] compare with ’Conv’. ’Upconv’ stands for a bilinear up-
sampling with specific factor (f), followed by a ’iConv’ operation
with stride=1. © represents channel-wise concatenation. ’Resid-
ual layer’ is the residual blocks of the original ResNet34 [5] de-
sign, of two feature maps

ume rendering to get a low-resolution feature map and then
upsample it to get the final high-resolution map by neu-
ral rendering. However, the typical upsampling approach
will compromise the 3D multi-view consistency (e.g., the
appearance of the subject will change when moving the
camera). To alleviate this problem, we use the upsampling
method adopted in [1, 4].

B. Normal Regularization

We use numerical approximation to obtain the normal
n(x) = ▽xσ(x)

∥▽xσ(x)∥2
for an arbitrary point x = (x, y, z).

▽xσ(x) = (
σ(x+ ε, y, z)− σ(x− ε, y, z)

2ε
, · · · ,

σ(x, y, z + ε)− σ(x, y, z − ε)

2ε
)

(1)

where ε = 0.002 is a minimal variable.
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Figure 2. Qualitative results of our method on ZJU Mocap [8] and GeneBody [2] datasets. Fs denotes training from scratch, Ft
indicates fine-tuning the model after pretraining on THuman2.0 [13] dataset.

From Scratch Finetune

Model PNSR↑ SSIM↑ LPIPS↓ PNSR↑ SSIM↑ LPIPS↓
313 30.56 0.965 0.0532 31.49 0.971 0.0444
315 26.78 0.952 0.0702 26.98 0.956 0.0607
377 27.36 0.943 0.0775 28.38 0.952 0.0641
386 27.50 0.914 0.1218 29.26 0.932 0.0900
387 25.56 0.920 0.0986 26.46 0.932 0.0804
390 26.91 0.915 0.1070 27.73 0.926 0.0880
392 28.54 0.929 0.0980 29.45 0.942 0.0776
393 26.81 0.920 0.0947 27.69 0.933 0.0785
394 28.05 0.924 0.0923 28.64 0.934 0.0760

Average 27.56 0.931 0.0904 28.45 0.942 0.0733

Table 2. Quantitative results of novel view synthesis on ZJU-
Mocap [8] dataset.

C. Experiments on the Genebody

One advantage of our approach is that our method can be
pre-trained on a large dataset of various identities and then
quickly fine-tuned on a specific identity. As shown in Tab. 4
and Fig. 2, such a strategy not only gives our model stronger
generalizability compared with training from scratch but
also requires only fine-tuning fewer steps to converge. In
our experiments, we first pre-trained our model on the THu-
man2.0 [13] dataset, which contains a large number of dif-
ferent identities, and then fine-tuned 2, 000 steps on the
first 100 frames for each sequence in the Genebody [2]
test dataset, which cost about 20 minutes. For comparison,

From Scratch Finetune

Model PNSR↑ SSIM↑ LPIPS↓ PNSR↑ SSIM↑ LPIPS↓
313 27.65 0.943 0.0731 28.29 0.949 0.0622
315 25.03 0.935 0.0858 25.68 0.944 0.0717
377 26.49 0.930 0.0952 27.58 0.942 0.0778
386 27.63 0.911 0.1288 29.51 0.930 0.0983
387 24.61 0.910 0.1084 25.59 0.926 0.0863
390 26.86 0.916 0.1105 27.90 0.929 0.0897
392 28.07 0.931 0.0979 28.94 0.942 0.0788
393 26.72 0.926 0.0883 27.54 0.938 0.0734
394 27.04 0.916 0.0977 27.65 0.927 0.0801

Average 26.68 0.924 0.0984 27.63 0.936 0.0798

Table 3. Quantitative results of novel pose synthesis on ZJU-
Mocap [8] dataset.

Figure 3. An extreme case from Genebody [2] dataset. Our
model usually synthesizes thinner results when the performer is
wearing a loose dress.

we also train our model from scratch without any pretrain-
ing, Compared to per-scene optimization methods such as
NT [10], NHR [12], NB [8], which often spend hours or
even a day on training, our method can quickly produce



more realistic and detailed images. Genebody [2] has a
broad distribution across different clothing styles and poses,
even containing professional occasions such as traditional
opera costumes, which is more challenging than ZJUMo-
cap [8]. Due to the minimal-clothed topology of SMPL,
our model struggles to express extremely loose clothes and
accessories. As shown in Fig. 3, our model usually synthe-
sizes thinner results when the performer is wearing a loose
dress. To solve this problem, we plan to introduce exten-
sions to SMPL (e.g. SMPLicit [3]) in future work.

GeneBody [2]

Model PSNR↑ SSIM↑ LPIPS↓
NV [7] 19.86 0.774 0.267
NT [10] 21.68 0.881 0.152

NHR [12] 20.05 0.800 0.155
NB [8] 20.73 0.878 0.231

Ours(Fs) 25.38 0.912 0.106
Ours(Ft) 26.15 0.921 0.081

Table 4. Quantitative comparisons on unseen pose with case-
specific optimization methods. We evaluate the novel view syn-
thesis of unseen poses with case-specific optimization methods on
GeneBody [2].

D. More Ablation Experiments

The impact of the number of input views. Benefiting
from the multi-view feature fusion mechanism we designed,
our method can theoretically accept different numbers of in-
put views. In our experiments, we randomly select m = 4
view images as inputs during training. To verify the effect
on the number of input views, we conducted an experiment
that change the number of input views during testing. As
shown in Tab. 5, our method achieves better performance
as the number of input views increases. To balance perfor-
mance and efficiency, we select m = 4 views (front, back,
left and right) around the subject as inputs during testing in
all our experiments.

Input views PSNR↑ SSIM↑ LPIPS↓
1 27.36 0.9281 0.04854
2 29.25 0.9393 0.03689

4(Ours) 30.18 0.9472 0.03049
6 30.65 0.9530 0.02838
8 31.01 0.9565 0.02663
16 31.54 0.9605 0.02448

Table 5. The Impact of the number of input views.

The impact of different SMPL noise levels. We propose
a framework for learning generalized neural radiance fields
from sparse multi-view images, which introduces SMPL as
a geometric prior. Theoretically, the introduction of SMPL

should lead to better gains, but in practice, the imprecise es-
timation of SMPL leads to worse results as shown in Tab 6.

Noise τ (cm) 0 1 3 5 10

PSNR↑ 30.12 29.14 28.58 28.19 27.09
SSIM↑ 0.9365 0.9302 0.9243 0.9206 0.8959
LPIPS↓ 0.0374 0.0462 0.0532 0.0566 0.0729

Table 6. The impact of different SMPL noise levels. By adding
Gaussian noise (with variance τ ) to the SMPL vertices, the perfor-
mance increases as the noise decreases.
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ard Pons-Moll, and Francesc Moreno-Noguer. Smplicit:
Topology-aware generative model for clothed people. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2021, virtual, June 19-25, 2021, pages 11875–
11885. Computer Vision Foundation / IEEE, 2021. 3

[4] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In ICLR. OpenReview.net, 2022.
1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778. IEEE Computer Society, 2016. 1

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 1

[7] Stephen Lombardi, Tomas Simon, Jason M. Saragih, Gabriel
Schwartz, Andreas M. Lehrmann, and Yaser Sheikh. Neu-
ral volumes: learning dynamic renderable volumes from im-
ages. ACM Trans. Graph., 38(4):65:1–65:14, 2019. 3

[8] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR,
pages 9054–9063, 2021. 2, 3

[9] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 1

[10] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
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