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A. Proofs
A.1. Derivation of GSS ELBO

We provide the proof of Eq. (2) in the main paper here.
We rewrite the log-likelihood of semantic segmentation
log p(c|x) by introducing a discrete L-dimension latent dis-
tribution q(z|c) (with z ∈ ZL).

log p(c|x) = log

∫
p(c, z|x) dz

= log

∫
p(c, z|x)q(z|c)

q(z|c)
dz

= logEq(z|c)
[
p(c, z|x)
q(z|c)

]
≥ Eq(z|c)

[
log

p(c, z|x)
q(z|c)

]
(as − log(·) is convex, by Jensen’s Inequality:

f(
∑
i

λixi) ≤
∑
i

λif(xi), where λi ≥ 0,
∑
i

λi = 1 )

= Eq(z|c)
[
log

p(c|z)p(z|x)
q(z|c)

]
= Eq(z|c) [log p(c|z)] + Eq(z|c)

[
log

p(z|x)
q(z|c)

]
= Eq(z|c) [log p(c|z)]−DKL(q(z|c), p(z|x))
= Eqϕ(z|c) [log pθ(c|z)]−DKL(qϕ(z|c), pψ(z|x)).

Different from ELBO [9] in VAE, the latent variable
we introduce here is q(z|c), rather than q(z) to solve the
conditioned mask generation problem.

A.2. Derivation of latent posterior learning

We provide the proof of Eq. (4) in the main paper here. As
stated in main paper, the first stage latent posterior training
is conducted by a MSE loss

min
θ,ϕ

∑
c

Eqϕ(z|c)∥pθ(c|z)− c∥.
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Figure S.1. An illustration of our transformed objective. Rec.
stands for reconstruction.

Let us denote ĉ = pθ(c|z) is the reconstructed mask.
Then, we define a linear transform x(c) = Xβ(c) = cβ,
where β ∈ RK×3 and an arbitrary inverse transform
ĉ = X−1

γ (x̂(c)). Noted that the parameter γ can be non-
linear. x(c) is called maskige and x̂(c) is the recon-
structed maskige produced by the maskige decoder
x̂(c) = Dθ(ẑ). The transformed latent parameter ẑ preserves
the probability for the linear transformation,

qϕ̂(ẑ|x
(c)) = qϕ̂(ẑ|cβ) = qϕ(z|c). (S.1)

Then, we have

min
θ,ϕ

∑
c

Eqϕ(z|c)2∥ĉ− c∥

= min
θ,ϕ,γ

∑
c

Eqϕ(z|c)
[
∥X−1(x̂(c))− c∥+ ∥ĉ− c∥

]
.

1

https://github.com/fudan-zvg/GSS


For the first term, since X−1(x̂(c)) = X−1(Dθ(ẑ)) which is
not related to θ and ϕ. Therefore, we have

min
θ,ϕ,γ

∑
c

Eqϕ(z|c)∥X
−1(x̂(c))− c∥

=min
γ

∑
c

Eqϕ(z|c)∥X
−1(Dθ(ẑ))− c∥

=min
γ,β

∑
c

Eqϕ̂(ẑ|x(c))∥X−1(Dθ(ẑ))− c∥ (Eq. (S.1)).

(S.2)

For the second term, ĉ = Dθ(z) is not related to γ, which
can be rewritten as

min
θ,ϕ

∑
c

Eqϕ(z|c)∥ĉ− c∥

= min
θ,ϕ,s.t.∥β∥=1

∑
c

Eqϕ(z|c)∥ĉ− c∥∥β∥

= min
θ,ϕ,s.t.∥β∥=1

∑
c

Eqϕ(z|c)∥ĉβ − cβ∥

= min
θ,ϕ,s.t.∥β∥=1

∑
c

Eqϕ(z|c)∥(ĉβ − x̂(c)) (equal to 0 by def.)

+ (x̂(c) − x(c))

+ (x(c) − cβ)∥ (equal to 0 by def.)

= min
θ,ϕ,s.t.∥β∥=1

∑
x(c)

Eqϕ(z|c)∥x̂
(c) − x(c)∥ (not related to θ)

= min
θ,ϕ,s.t.∥β∥=1

∑
x(c)

Eqϕ(z|c)∥Dθ(ẑ)− x(c)∥

= min
θ,ϕ̂,β,s.t.∥β∥=1

∑
x(c)

Eqϕ̂(ẑ|x(c))∥Dθ(ẑ)− x(c)∥ (Eq. (S.1)).

Combining Eq. (S.2) and Eq. (S.3), our final objective is

min
ϕ̂,θ,β,s.t.∥β∥=1

∑
x(c)

Eqϕ̂(ẑ|x(c))∥Dθ(ẑ)− x(c)∥

+ min
γ,β

∑
c

Eqϕ̂(ẑ|x(c))∥X−1(Dθ(ẑ))− c∥. (S.3)

For the first term, it is a VQVAE [18] reconstruction ob-
jective for maskige. Therefore, a VQVAE pretrained by
DALL·E [16] with a large-scale OpenImage dataset can read-
ily offer a good lower bound for the first term.

As such, only the second term is left for optimization.
We can optimize the γ with gradient descent, corresponding
to GSS-FT&TT. Besides, we can solve this problem more
efficiently by a linear assumption, i.e. X−1(x̂(c)) = x̂(c)γ
where γ ∈ R3×K . We denote the X̂(c) is a matrix with each
row an reconstructed maskige and C is a matrix with each
row an input mask. We solve the optimization with least

square error

∥X−1(X̂(c))− C∥2

=∥X̂(c)γ − C∥2

=∥(X̂(c) −X(c) +X(c))γ − C∥2

≤
(
∥X̂(c) − Cβ∥∥γ∥+ ∥X(c)γ − C∥

)2

. (S.4)

The optimization over both β and γ is non-convex (as shown
by the poor performance with GSS-TT), so we optimize
them sequentially in GSS-FF&FT&TF. For GSS-FF, we use
a hand-crafted optimized β.(

∥X̂(c) − Cβ∥∥γ∥+ ∥X(c)γ − C∥
)2

≤
(
τ∥γ∥+ ∥X(c)γ − C∥

)2

=(τ∥γ∥+ ∥Cβγ − C∥)2

≤ (τ∥γ∥+ ∥C∥∥βγ − ⊮∥)2 . (S.5)

where τ = ∥X̂(c) − Cβ∥ is bounded and unrelated to γ
by provided VQVAE and β. Our objective then changes to
minimize the upper bound.

min
γ,s.t.∥γ∥=1

RSS(γ) = min
γ,s.t.∥γ∥=1

∥βγ − ⊮∥2

= min
γ,s.t.∥γ∥=1

(βγ − ⊮)⊤(βγ − ⊮).

(S.6)

We take the derivative of Eq. (S.6), then

∂RSS
∂γ

= 2β⊤(βγ − ⊮) = 0. (S.7)

The unique solution of Eq. (S.7) is

β⊤βγ = β⊤

(⇒) (β⊤β)−1(β⊤β)γ = (β⊤β)−1β⊤

(⇒) γ = (β⊤β)−1β⊤. (S.8)

For the special design GSS-TF, we use a cascaded opti-
mization to automatically optimize β and γ.

βt+1 = argmin
β

(
∥X̂(c) − Cβ∥∥γt∥+ ∥Cβγt − C∥

)2

γt+1 = (β⊤
t+1βt+1)

−1β⊤
t+1.

The βt+1 is optimized by one mini-batch step of gradient
descent.

B. Maskige optimization designs
As illustrated above, β is a linear projection applied on

the ground-truth mask, i.e. x(c) = cβ. As is shown in
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Figure S.2. Encoder-decoder style architecture of GSS. “Pred.” stands for prediction.

Method Iteration VOC [7] Context [15] CamVid [1] WildDash [21] KITTI [8] ScanNet [4] h. mean

- Discriminative modeling:

CCSA [14] 500k 48.9 - 52.4 36.0 - 27.0 39.7
MGDA [17] 500k 69.4 - 57.5 39.9 - 33.5 46.1
MSeg-w/o relabel [11] 500k 70.2 42.7 82.0 62.7 65.5 43.2 57.6
MSeg [11] 500k 70.7 42.7 83.3 62.0 67.0 48.2 59.2
MSeg-480p [11] 1,500k 76.4 45.9 81.2 62.7 68.2 49.5 61.2
MSeg-720p [11] 1,500k 74.7 44.0 83.5 60.4 67.9 47.7 59.8
MSeg-1080p [11] 1,500k 72.0 44.0 84.5 59.9 66.5 49.5 59.8

- Generative modeling:

GSS-FF (Ours) 160k 78.7 45.8 74.2 61.8 65.4 46.9 59.5
GSS-FT-W (Ours) 160k 79.5 47.7 75.9 65.3 68.0 49.7 61.9

Table S.1. Additional cross-domain semantic segmentation performance on MSeg dataset test split [11]: We add performance of
Mseg-480p, Mseg-720p and Mseg-1080p [11] results to Table 6 of the main paper. No improved versions of our methods are included.
“480p”, “720p” and “1080p” mean all test images are resized to 480p (the shorter side is 480 pixel), 720p and 1080p, respectively, when
MSeg model inference.

Eq. (S.4) and Eq. (S.5), the quality of ∥X̂(c) −Cβ∥ directly
affects the quality of the following γ optimization, so the
optimization of β will affect the difficulty degree of our
learning of X−1

γ . The cascaded optimization in GSS-TF
(84.37% reconstruction mIoU) provides an upper-bound for
β optimization. However, the gradient descent optimization
costs another 5 GPU hours according to Table 1 of main pa-
per. Therefore, we propose a hand-crafted optimization of β
in GSS-FF&FT&FT-W that achieves satisfying performance
without requiring extra training time, based on the maximal
distance assumption.

To understand this assumption, we can consider the linear
projection parameter β ∈ RK×3 as a colorization process,
where each category is assigned an rgb color. The idea

behind the maximal distance assumption is to maximize the
color difference between the encoding of each category. For
instance, if two different categories are assigned similar col-
ors, the model may struggle to differentiate between them.
Therefore, by maximizing the distance between color em-
beddings, we can improve the model’s ability to distinguish
between categories. We interpret the parameter β as R, G, B
color sequences Ar,Ag,Ab assigned to each category. To
better satisfy the maximal distance assumption, we will try
different ways to construct these sequences, i.e.., assigning
colors to each category.

(i) Arithmetic sequence on R/G/B channels: Designing
three arithmetic sequences Ar,Ag,Ab for R/G/B channels



Colorization technique mIoU aAcc

Arithmetic sequence 85.99 94.37
+ Misalignment start points 86.12 94.45
+ Random additive factors 87.42 95.08
+ Category-specific refinement 87.73 95.29

Table S.2. Ablation on maximal distance assumption: The
maskige reconstruction performance (mIoU and aAcc) of GSS-
FF on ADE20K val split under different Mask-to-maskige trans-
formations X .

respectively. Then we have

Am = {am1 , am2 , . . . , ami , . . . , amn } ,m ∈ {r, g, b} . (S.9)

For the i-th color value,

ami = am1 + (i− 1) · km, km ∈ N+, (S.10)

where color channel m ∈ {r, g, b}, the interval of arithmetic
sequence km can be difference between channels, am1 default
is 0. The set of colors is the Cartesian product of these three
series,

C = Ar ×Ag ×Ab. (S.11)

E.g., if the interval of R, G, B channel k = 45, the color set
C will be {(0, 0, 0) , (0, 0, 45), . . . , (225, 225, 225)}.

(ii) Misalignment start points: The original starting point
of the arithmetic sequence is 0, 0, 0 for R/G/B respectively.
In order to avoid duplication of values, we let R/G/B have
different starting points,

ar1 ̸= ag1 ̸= ab1. (S.12)

In practice, we simply set to ar1 = 0, ag1 = 1, ab1 = 2.
(iii) Random additive factors: Adding three independent

random factors t ∈ [0, T ] on the R/G/B arithmetic sequence
respectively, to avoid repetition of several same values,

ami = am1 + (i− 1) · km + tmi . (S.13)

E.g., a color sequence with random additive factors:
{(1, 7, 3) , (4, 2, 45), . . . , (235, 215, 232)}. In practical
terms, T is set to 15.

(iv) Category-specific refinement: We equip the lower IoU
categories with values where the R/G/B values vary at large
degrees (e.g., we replace (128, 128, 128) with (0, 128, 255)).
In addition, we keep the color away from gray as possible,
because gray is located in the center of the color space, thus
being close to many categories and giving rise to a harder
learning problem. Such an category-specific refinement al-
lows each category to be possibly furthest from the others as
possible.

Results As shown in Table S.2, it is evident that the coloriza-
tion design for maskige generation presents a good amount
of impact on the reconstruction performance. In particular,
the last design category-specific refinement yields the best
results, conforming our intuition and design consideration.

Visualization For visual understanding, in Figure S.7 and
Figure S.8 we visualize the 150 colors corresponding to all
the categories of ADE20K [23] generated by the maximal
distance assumption (hand-designed) and gradient descent
optimization (learned), respectively. We observe that the
hand-designed method produces the colors with enhanced
contrast and greater vibrancy. Instead, the colors learned are
vibrant for the more frequent categories and relatively dark
for the less frequent categories.

C. Overall architecture
Following [6, 16], the modeling of latent prior learning

is formulated by an encoder-decoder architecture (See Fig-
ure S.2). For the image encoder Iψ , we take the advantage of
hierarchical shifted window transformer [12] for extracting
the multi-scale information [19] and memory efficiency [13].
This is different from UViM [10], which uses a single-scale
and full-range Transformer as the encoder. To implement the
image encoder, we use the Swin-Large architecture [12], pre-
trained on ImageNet-22K [5], as the backbone. As shown in
Figure S.2, we use four-scale feature maps (1/4, 1/8, 1/16,
1/32) and upsample all the lower-resolution features to 1/4
scale, then concatenate four features across the channel [20].
The multi-level aggregation consists of an MLP and D layers
of hierarchical shifted-window Transformer [12], with the
swin window size set to 7, the number of attention heads to
16, the embedding dimension to 512, and the FFN dimension
to 1024. For the implementation version with resnet as the
backbone, D = 6. However, for models with strong Swin
Transformer backbones, fewer MLA layers are needed, and
thus D = 2. We implement the maskige decoder Dθ as a
fixed VQVAE decoder [18].

D. More training details
(i) Latent posterior learning: As illustrated before, the latent
posterior learning is simplified as:

min
X−1

Eqϕ̂(ẑ|X (c))∥X−1(x̂(c))− c∥. (S.14)

The target can be interpreted as minimizing the distance be-
tween a ground-truth segmentation mask and the predicted
mask. Following [2, 10], we use cross-entropy loss instead
of euclidean distance for a better minimization between seg-
mentation masks.
(ii) Latent posterior learning for X : For GSS variants whose
X dose not require training, such as GSS-FF&FT&FT-W,
we assign a 3-channel encoding to each category directly
based on the maximum distance assumption. For the GSS
variants that require training, including GSS-TF&TF&, we
freeze the parameters of the VQVAE of the DALL-E pretrain
and train X for 4,000 iterations using SGD optimizer with a
batch size of 16. By the way, the training process of GSS-TT
also optimizes the X−1 function.



(iii) Latent posterior learning for X−1: We propose a
method for training an X−1 that is more robust to noise
(used in GSS-FT&FT-W). We found that training X−1 with
noisy maskige helps it learn to be more robust. To pro-
vide noisy maskige, we can use the trained Iψ, DALL·E
pre-trained Dθ, and X−1 to directly predict noisy maskige
predictions. In practice, we use Iψ that trained up to the mid-
dle checkpoint (e.g., 32,000 iterations) or final checkpoint
in latent prior learning. X−1 is trained using cross-entropy
loss and optimized with AdamW, with a batch size of 16. We
trained GSS-FT-W for 40,000 iterations, while GSS-FT was
trained for only 3,000 iterations due to its fast convergence.
The non-linear function X−1 is implemented using either a
convolutional or Swin block structure. Specifically, for GSS-
FT, the structure comprises two conv 1× 1 layers enclosing
a conv 3 × 3 layer. However, this approach is superseded
by GSS-FT-W, the final model, which employs a group of
Swin blocks with a number of heads of 4, a Swin window
size of 7, and an embedding channel of 128 to realize X−1.
Regardless of the specific implementation, X−1 relies on
local RGB information in the predicted mask to deduce the
category of each pixel.
(iv) Latent prior learning: For the optimization of Iψ, we
use the AdamW optimizer and implement a polynomial
learning rate decay schedule [22] with a minimum learn-
ing rate of 0.0. We set the initial learning rate to 1.5× 10−3

for Cityscapes and 1.2× 10−4 for ADE20K and Mseg.

E. Domain generic maskige and image en-
coder

We did two tests by deriving a general maskige on
MSeg [11].
(i) As shown in Table 7 in main paper, we applied our gen-
eral maskige to the Cityscapes dataset and achieved a
mIoU score of 79.5, which is only slightly lower than the
mIoU score of 80.5 obtained using the Cityspaces specific
maskige. This result demonstrates the versatility of our
maskige across different datasets.
(ii) To further evaluate the effectiveness of our domain-
generic approach, we shared the image encoder Iψ between
MSeg and Cityscapes and trained our model on the training
split of MSeg. We then evaluated the model on the zero-
shot test split consisting of 6 unseen datasets. As shown in
Table 6 in main paper, our GSS outperforms other state-of-
the-art methods on the MSeg dataset. These experiments
demonstrate that our maskige is domain-generic and has
the potential for open-world settings.

F. Additional quantitative results
We additionally compare the improved versions of

MSeg [11] with 1,500k longer training on the cross-domain
benchmark. As shown in Table S.1, despite using short

training, our model still achieves better performance. This
verifies the advantage of our method in terms of training
efficiency, in addition to the accuracy.

G. Additional qualitative results
For further qualitative evaluation, we visualize the predic-

tion results of our GSS on both single-domain segmentation
datasets [3, 23] and cross-domain segmentation dataset [11].

As shown in Figure S.3, our GSS has an accurate per-
ception of buses, trucks and pedestrians in distance, whilst
also splitting the dense and slim poles. In Figure S.4, we
see that GSS correctly recognises a wide range of furniture
such as curtains, cabinets, murals, doors and toilets; This
suggests that our maskige generative approach can accurately
represent a wide range of semantic entities. Figure S.5 and
Figure S.6 show the cross-domain segmentation performance
on images from previously unseen domains (Mseg test
datasets). It can be seen that GSS performs well in all five
datasets in the MSeg test split [11], further validating that
our generative algorithm has strong cross-domain general-
ization capabilities.

H. Reproduced semantic segmentation version
of UViM [10]

We reproduce UViM with mmsegmentation and follow
the hyperparameter and structure in the paper [10]. To
achieve a fair comparison with our approach, we have made
some modifications: (i) we implement Swin-Large [12] pre-
trained on ImageNet 22K [5] as the Language model LM as
ours; (ii) we generate the Guiding code straightforwardly in
a non-autoregressive manner; (iii) we trained 80k iterations
in the first stage of UViM [10] and 160k iterations in the
second stage. These modifications are necessary to ensure a
fair comparison.

I. Societal impact
Given that the strong cross-domain generalization capa-

bility, we consider our model has the potential to be used in
a wide range of visual scenarios. This is desired in practical
applications due to the benefits of reducing the demands
of per-domain model training and easier deployment and
system management. This is meaningful and advantageous
in both economics and environment. Conversely, our algo-
rithm may be susceptible to misuse and unintended negative
consequences. Thus, it is essential to enforce regulations and
oversight for algorithmic applications, ensuring their safe,
responsible use for the betterment of humanity and society.

J. Limitations and future work
While our study represents a significant step forward for

generative segmentation, our models still fall short of the



performance achieved by top discriminative models. One
contributing factor is that decision boundaries for generative
models are often less precise than those of discriminative
models, resulting in less accurate object edges in segmen-
tation. Another drawback is that generative models require
larger amounts of data to achieve good performance, because
discriminative models only learn decision boundaries, while
generative models need to learn the distribution of the en-
tire sample space. In our experiments, the performance of
MSeg is better compared to Cityscapes and ADE20K, which
roughly indicates this point.

Additionally, since we convert all categories to colors,
the color space is limited, and as the number of categories
increases, the colors become more crowded. This can lead to
confusion when using X−1 to query and predict the closest
pre-defined color for each category from maskige, espe-
cially near object edges. Therefore, it is worth trying to
expand this space to higher dimensions.

Looking ahead, there are several avenues for future re-
search in generative semantic segmentation. One promising
direction is instance-level segmentation, which would enable
more precise identification and separation of individual ob-
jects within an image. Additionally, we believe that it would
be valuable to explore a unified model that can perform mul-
tiple vision tasks, such as segmentation, 2D object detection,
depth prediction, 3D detection, and more.

Given that the second stage training of GSS focuses on
latent prior learning, new vision tasks could be inclusively
added by incorporating a new posterior distribution of la-
tent variables, without requiring any changes to the model
architecture. By pursuing these directions, we believe that
significant advances can be made in the field of generative
semantic segmentation.
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—Image ————————————Ground Truth ———————————-Prediction

Figure S.3. Qualitative results of semantic segmentation on Cityscapes val split [3].



——Image ————————————–Ground Truth ——————————–Prediction

Figure S.4. Qualitative results of semantic segmentation on ADE20K val split [23].



———Image ————-Ground Truth ———Prediction —————Image ———–Ground Truth ———–Prediction——-

Figure S.5. Qualitative results of semantic segmentation on MSeg test datasets [11]. From top to bottom: Pascal VOC [7], Pascal
Context [15], ScanNet-20 [4], CamVid [1] and WildDash [21] (the last two rows).

Figure S.6. Qualitative results of semantic segmentation on MSeg test dataset [11] (KITTI dataset [8]). The 1st row is input image, the
2rd row is Ground Truth, and the 3rd row is prediction result.
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Figure S.7. Visualization of maskige for each category in ADE20K [23] dataset under maximal distance assumption.
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Figure S.8. Visualization of maskige for each category in ADE20K [23] dataset under gradient descent optimization.


