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A. Ablation study

We show the effectiveness of even-distributed parame-
ters in Table 9 and Table 10 by increasing kernel size and
channel width of later layers. For the NeRV block, it uses
fixed K = 3, and channel reduction factor r = 2. We also
show an embeddings ablation study, for spatial size (h⇥w)
in Table 11 and embedding dimensions (d) in Table 12.

Table 9. Kernel size (Kmin,
Kmax) ablation, (with r=1.2)

K PSNR MS-SSIM

1,3 35.02 0.9752
1,5 35.57 0.9773

1,7 35.07 0.9757
3,3 33.09 0.9587

Table 10. Channel reduction r
ablation, (with K=1,5)

r PSNR MS-SSIM

1 34.96 0.9745
1.2 35.57 0.9773

1.5 34.98 0.9762
2 34.32 0.9715

Table 11. Embedding spatial

size ablation

h⇥ w PSNR MS-SSIM

1⇥ 2 34.79 0.9735
2⇥ 4 35.57 0.9773

4⇥ 8 35.12 0.9761

Table 12. Embedding dimen-

sion ablation

d PSNR MS-SSIM

8 35.13 0.9770
16 35.57 0.9773

32 35.08 0.9758

B. Video decoding

We firstly show command to evaluate decoding speed of
H.264 and H.265:
ffmpeg -threads ThreadsNum -i Video -preset medium -f
null -benchmark -

And we also show quantitative decoding results in Ta-
ble 13, 14, and Table 15. In Table 15, we can further in-
crease video decoding speed with a smaller channel width
(i.e. a big reduction factor r = 2).

C. Video compression

Then we show the details for downstream tasks of video
compression, which can be divided into three steps: global
unstructure pruning, quantization, and entropy encoding.

1) Model Pruning. Given a pre-trained model, we use
global unstructured pruning to reduce the model size, where
parameters below a threshold are pruned and set as zero.

For a model parameter ✓i, ✓i =

(
✓i, if ✓i � ✓q
0, otherwise,

where ✓q

is the q percentile value for all model parameters ✓. As a

Table 13. Decoding FPS "

PSNR 32 35 37

H.264 279.7 240.9 192.7
H.265 211.9 163.2 132.5
DCVC 4.7 4.6 4.5
HNeRV 395.9 332.7 224.8

Table 14. Decoding time (s) #

# Frames 100% 50% 25%

H.264 0.548 0.480 0.343
H.265 0.809 0.708 0.506
DCVC 27.913 24.424 17.446
HNeRV 0.397 0.198 0.099

Table 15. HNeRV Decoding FPS

PSNR 32 35 37

r=1.5 395.9 332.7 224.8
r=1.75 397.4 373.8 320.7
r=2 405.5 383.3 350.5

normal practice, we fine-tune the model to regain the repre-
sentation after pruning.

2) Model and embedding quantization. Model quantiza-
tion and embedding quantization follow the same scheme.
Given an vector µ, we linearly map every element to the
closest integer,

µi = Round
✓
µi � µmin

scale

◆
⇤ scale + µmin,where

scale =
µmax � µmin

2b � 1

(3)

µi is one vector element, ‘Round’ is a function that rounds
to the closest integer, ‘b’ is the bit length for quantization,
µmax and µmin are the max and min value of vector µ, and
‘scale’ is the scaling factor. For scaling factor and zero
points at this step, we can also try other methods instead
of current min-max one, like choosing 2b evenly-distributed
values to minimum the mean square error.

3) Entropy encoding. Finally, we use entropy encod-
ing to further reduce the size. Specifically, we leverage
Huffman coding [15] for quantized weights and get lossless
compression.

D. Weight Pruning for Model Compression.

We appreciate this concern, which has been unresolved
since the original NeRV paper. By applying entropy en-
coding (assigning fewer bits for frequent symbols), we can
store pruned weights with limited bits, since all pruned
weights share a frequent symbol: 0. We provide corrected
model compression results in Tab. 16, and will update the
paper accordingly. We use 2 baselines (models with no



pruning) – one where the model is only quantized, and an-
other where we apply entropy encoding after quantization.
As we prune more parameters, entropy encoding enables us
to use fewer bits to store the sparse model weights.
Table 16. Compression results. “Size ratio” compares to model
with quant. only, and “Sparsity” indicates amount of weights
pruned.

Compression Quant Prune + Quant + Entropy coding
Sparsity 0% 0% 10% 15% 20% 25%

PSNR 37.61 37.56 37.51 37.32 37.02 36.61
Size (bits) 11.54M 10.94M 10.41M 10.09M 9.77M 9.36M
Size ratio 100% 94.8% 90.2% 87.4% 84.7% 81.1%

E. HNeRV architecture details

We also provide architecture details for HNeRV models
in various tasks and datasets in Table 17, with total size,
strides list, encoder dimension c1, embedding dimension
d, channel width of decoder input c2, channel reduction r,
lowest channel width Chmin, min and max kernel size Kmin,
Kmax .

Table 17. HNeRV architecture details

Video size size strides c1 d c2 r Chmin Kmin, Kmax

640⇥1280 0.35 5,4,4,2,2 64 16 32 1.2 12 1,5
640⇥1280 0.75 5,4,4,2,2 64 16 48 1.2 12 1,5
640⇥1280 1.5 5,4,4,2,2 64 16 68 1.2 12 1,5
640⇥1280 3 5,4,4,2,2 64 16 97 1.2 12 1,5
480⇥960 3 5,4,3,2,2 64 16 110 1.2 12 1,5
960⇥1920 3 5,4,4,3,2 64 16 92 1.2 12 1,5

F. Per-video compression results

We also show video compression results for UVG videos
in Figure 10.

G. More visualizations

We show more visualizations for video regression (Fig-
ure 11), video interpolation (Figure 12), and video inpaint-
ing (Figure 13).



Figure 10. Compression results averaged across all UVG videos, and for each specific videos.



Figure 11. Video regression results. Left) ground truth. Middle) NeRV output. Right) HNeRV output.

Figure 12. Interpolation results.



———-

Figure 13. Inpainting results.
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