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I. MANO-HD
MANO. MANO can be driven with parameters β ∈ R10

and θ ∈ RB×3 (B = 16 indicates the number of per-bone
parts), where β is the coefficients of a shape PCA bases
while θ represents joint rotations in axis-angle form. Mean
template mesh is deformed to match different shapes:

Ṽ = V̄ + Bs(β) + Bp(θ)

J = J (V̄ + Bs(β)),
(I)

where V̄,Bs,Bp are template vertices and shape/pose
blendshapes. Canonical joint locations J ∈ RB×3 are given
with the regressor J .

Then, bone transformation matrix Gb ∈ R4×4 is com-
puted along the kinematic chain K with the Rodriguez for-
mula R:

Gb(θ,J) =
∏

j∈K(b)

[
R(θj) Jj

0 1

]
(II)

Finally, linear blend skinning is used to pose vertices
with skinning weights W ∈ RV×B (V denotes the num-
ber of vertices) as follows,

Vi =
∑B

b=1 Wb,iGb(θ,J)Gk(0,J)
−1Ṽi. (III)

Optimization of MANO-HD. Following [1], we subdi-
vide the MANO template mesh to obtain a high-resolution
version with 12,337 vertices and 24,608 faces. Neverthe-
less, articulated dynamic mesh subdivision is a non-trivial
task, and mesh skinning operation is likely to introduce ar-
tifacts to deformed mesh. Thus, we optimize upsampled
skinning weights WHD ∈ RV HD×B to eliminate dynamic
artifacts under various hand poses using energy functions as
follows,

Ll0 =
∑B·V HD

i=1 (1− e−ηWHD
i )

Llap = 1
V HD

∑V HD

i=1

∑
j∈N(i)

1
ω ||V

HD
i −VHD

j ||2
Lsurf = Cham(VHD,F),

(IV)

Method Lap. Cham. l0 norm (%)
MANO 23.31 - 16.29

MANO-HD w/o WHD opt. 1.923 7.014 17.97
MANO-HD w/o Ll0 1.576 7.170 44.15

MANO-HD 1.753 7.039 16.89

Table I. Effects of the WHD optimization (opt.).
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Figure I. Hand mesh comparison under a large deformation.

where Ll0 is approximated l0 norm constraint [2] to pro-
duce sparse skinning weights. Llap is the Laplacian term
for mesh smoothness, where N(·) represents vertex neigh-
borhood and ω is the normalization factor. The func-
tion Cham(·, ·) computes the chamfer distance between
MANO-HD mesh vertices VHD and the MANO mesh
faces F. The overall energy function is given as LHD =
λl0Ll0 + λlapLlap + λsurfLsurf with balance term λ.

Implement Details of MANO-HD For WHD optimiza-
tion, we adopt the original MANO dataset [4] with 1,554
pose parameters for training and evaluation. We randomly
compose and interpolate finger-level rotations for data aug-
mentation. The training process lasts 3,000 steps with a
batch size of 1,024. The learning rate begins at 10−5 and
decreases with exponential decay. We use LHD as the ob-
jective and adjust hyperparameters to balance multiple en-
ergy terms as η = 100, λl0 = 0.01, λlap = 1, λsurf = 10.

Effects of MANO-HD We use Laplacian smoothing Lap.
and chamfer distance Cham. to reflect the smoothness and
accuracy of MANO-HD, whose definition is the same as
Llap and Lsurf in Eq. IV. Both Lap. and Cham. are pre-
sented in 10−4m. As the MANO surface is not smooth
enough, Lap. and Cham. cannot be simultaneously im-
proved. Besides, we introduce l0 norm as the metric, which
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Figure II. Kinematic tree and part indices of the hand. We also
show local pairs along the kinematic chain of forefinger.
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Figure III. PointNet structure. “c,+” indicate concatenation and
element-wise sum; “FC” denotes fully connected layer.

is defined as the proportion of non-zero elements in the
skinning weights.

Referring to Tab. I, mesh subdivision can improve Lap.,
yet incurs artifacts during skinning as shown in the part-
connection regions in Fig. I. Moreover, WHD optimiza-
tion without L0 cannot counteract the issue despite inducing
lower Lap. value. The reason behind this is the poor spar-
sity of WHD. After Ll0 -based optimization, the l0 norm
of WHD is on par with that of MANO, and the skinning
performance is improved (see Fig. I).

II. Network Structures
Kinematic Tree and Local Pair. Following the definition
of MANO [4], Fig. II shows the bone indices and connec-
tions for the hand. In addition, we demonstrate our defined

Name Depth Width Input size Output size
Mshape 4 128 84 3

MLP in Qpair 4 128 64 1
Malbedo 4 256 128 3
Millum 4 256 85 1

Table II. The details of MLPs.
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Figure IV. (a) Our proposed local-pair decoder. Multiple Point-
Nets/MLPs share weights. (b) Transformer-based decoder for
comparison. (c) Attention-based fusion of part-level encodings in
Transformer for bone part b2. Consistent with Fig.II, colors distin-
guish part-level geometry encodings. For visual conciseness, we
only show the process of forefinger.

local pairs.

PointNet Structure. The PointNet used in part-space en-
coder Qpart and local pair decoder Qpair is shown in
Fig III, where N,F denote point amount and feature size.
For Qpart, N in = 256, F in = 6, Nout = 1, F out = 64.
For Qpair, we get rid of the last MaxPool, leading to
N in = 2, F in = 64, Nout = 2, F out = 64.

MLP Details. Referring to Table II, we list MLP details
used in this paper.

Local-Pair Decoder. The local pair decoder Qpair con-
tains a PointNet and an MLP, whose detailed structures
are introduced before. Furthermore, we illustrate how the
Qpair processes the geometry encodings along the kine-
matic chain of forefinger, as shown in Fig. IV(a). First, lo-
cally paired encodings are treated as two points and fused
by the PointNet. Without across-point maxpooling, the
shape of PointNet output remains the same as its input.
Then, the MLP maps PointNet outputs to the occupancy
domain. As a result, a bone part could have multiple oc-
cupancy values from multiple local-pair predictions, which
are fused by a maximum operator. Because of the feature
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Figure V. Three groups of texture editing. (a) Reconstruction results. From left to right: albedo, illumination, and shaded image. (b)
Lighting editing. (c) Albedo editing. (d) Shadow editing.

Capture Training set Validation set
test/Capture0 11,757 194
test/Capture1 18,474 232
val/Capture0 18,340 184

Table III. Data amount for training and validation sets.

fusion by the PointNet, part boundaries are blurred and ex-
tend to the connection direction. Hence, the maximum op-
erator is used to produce a union of boundary-extended part
geometries. Finally, the sigmoid function is employed for
occupancy normalization.

Transformer-Based Decoder. To validate the local-pair
design, we develop a learning-based method with Trans-
former. As shown in Fig. IV(b), all part-level encodings
are fed to the Transformer encoder without any inductive
prior. Through 4 self-attention blocks, the Transformer can
perform adaptive feature fusion. Referring to Fig. IV(c),
the attention map determines the way to select important
features, where the effect is consistent with our local-pair
decoder. That is, bone parts b1, b2, b3 are connected in the
attention map for evolving the encoding of part b2.

III. Training Details

Video Data. For quantitative evaluation, we select three
sequences from the InterHand2.6M dataset [3]. Data
amount is shown in Table III, where training data are from
the ROM04 RT Occlusion sequence and validation data are
from the ROM03 RT No Occlusion sequence. Because
video frames are highly redundant, validation data are se-

lected by fixed skip steps, and we adjust the steps to assure
various hand poses and global rotations can be covered.

For each frame, we crop the hand region with annotated
detection boxes as the ground truth. First, the box is regu-
lated as a square box with 1.3 times expansion. Then, the
hand region is cropped and resized to 256× 256 resolution.

Training Settings. For PairOF pre-training, the learning
rate begins at 5× 10−4 and decreases with exponential de-
cay. The training process has 270K steps with a batch size
of 32.

For end-to-end training, the learning rate begins at 5 ×
10−4 and decreases with exponential decay. Due to the pre-
training, the learning rate of Qpair is set to be 10 times
smaller. Following [5], we use a patch strategy for train-
ing with a patch size of 32 × 32. The training process has
50K steps with a batch size of 16.

IV. Texture Editing
Referring to Fig V, our HandAvatar supports hand tex-

ture editing. Firstly, we change the illumination field by
a 1.5- or 0.8-times multiplication, as shown in Fig V(b).
Then, we shift the mean RGB value of the albedo field, lead-
ing to the results of Fig V(c). Besides, we edit shadow in
Fig V(d). In the top row, the texture is induced by letting
thumb-related directed soft occupancy values equal 0. As
a result, the self-occluded shadow patterns on the palm be-
come weakened. In the bottom row, we remove the shadow
patterns between the middle and ring fingers by setting the
directed soft occupancy values as 0 for bone parts b5 and
b11. The shadow editing results also validate the effect of
directed soft occupancy.
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Figure VI. PairOF (left) vs. Transformer-based method (right)

V. Discussion

The Disentanglement of Albedo and Illumination. The
disentanglement of albedo and illumination does not require
extra regularization. Albedo is known to be independent of
hand pose, while illumination depends on hand pose. In
SelF, the input of the albedo field is unrelated to the hand
pose, while pose-relevant elements are fed into the illumi-
nation field. Therefore, with various hand poses as training
data, the optimization process would ensure that the illumi-
nation is free from the albedo field. In addition, the illu-
mination field outputs a scalar, which cannot model RGB-
based (3-channel) albedo.

PairOF vs. Transformer-Based Method The motivation
of PairOF is to fuse part-level geometry encodings to elim-
inate the shape inconsistency in the area of part connec-
tions. Despite similar numerical results in Tab. 2 of the main
text, our PairOF is more effective in feature fusion than the
Transformer-based method. That is, hand bone connections
are unchangeable, and PairOF can use this prior knowledge,
leading to a more effective feature fusion than self-attention.
As a result, self-attention cannot visually achieve our moti-
vation as shown in Fig. VI. Also, we are more efficient in
terms of learning, i.e., the convergence of the Transformer-
based method is slower and more data-hungry.

VI. Limitations and Future Works

Besides the limitation discussed in the main text, Han-
dAvatar can be further improved from the following per-
spectives in the future. First, full lighting editing is worthy
of future research. For example, despite the lighting edit-
ing as shown in Fig V(b), it is hard to edit or add a point
light in the illumination field. Second, the representation
of specular effects in hand appearance is another interest-
ing topic. To achieve this goal, hand surface properties
with BRDF should be explored. Third, the hand geome-
try demonstrated in Fig. 5 in the main text is the result of
PairOF pre-training. After end-to-end training with texture
losses, the PairOF could produce a non-smooth surface with
geometry wrinkles. This is caused by the hand-pose annota-
tion error of InterHand2.6M. As a result, the PairOF could
produce fragile hand geometry to compensate for this error.
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