
� � � � �

�

���

���

���

���

���

���

���

� � � � � � �

���

���

���

���

���

���

���

��������

��� ��� ��� ��� ���

��

���

���

���

���

������

���� ���� ���� ���� ���� ���� ���� ����

�����

���

���

���

��

�

�
�
�
�
�
�

�������

������

������

������

������

Figure 6. The training curves with different deviation factors. Setting the deviation factor to 0 or 5 will make the training unstable.
However, ILD is less sensitive to moderate deviation values such as 0.2 to 1.

Table 5. Brax MuJoCo Ablation Results

Loss Trunc Length Deviation Factor

ILD-no-BC Chamfer-α L2 1 10 30 100 0 0.2 1 5

ant 594.66 583.77 514.07 110.07 583.77 -15.50 -16.29 560.95 583.77 594.88 552.25
hopper 253.33 242.27 173.39 53.45 242.27 217.87 144.95 239.96 242.27 243.93 248.76

humanoid 657.66 715.14 542.94 331.27 715.14 788.84 355.09 704.96 715.14 736.87 710.12
reacher -20.66 -23.18 -22.02 -31.72 -23.18 -23.24 -21.99 -75.36 -23.18 -22.86 -22.95

walker2d 213.26 209.00 240.33 72.13 209.00 203.53 61.77 214.00 209.00 215.90 214.43
swimmer 4.50 4.57 4.56 3.70 4.57 4.53 4.56 4.53 4.57 4.51 4.53

inverted pendulum 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00 128.00
acrobot 70 201.60 194.67 201.67 201.60 202.07 202.06 201.67 201.6 202.06 202.27

Appendix

A. Experiments
A.1. Deviation Factor

In Fig. 6, we show more details about the deviation fac-
tor. In general, if we do not force the learner state to be close
to the expert state, i.e., set the deviation factor to 0, then the
training process is unstable and tends to be suboptimal. On
the other hand, if we focus too much on local state match-
ing and set the deviation factor to 5, the learner policy tends
to be conservative and unstable. Between these two, ILD is
robust to deviation factors from 0.2 to 1 and does not vary
much. In addition to this, if we compare 0.2 with 1.0, the
smaller deviation factor learns slightly faster than the larger
value, however, as a trade-off, its final performance is lower.

A.2. Ablation Study

In Table 5, we show the results of ablation studies for
eight Brax tasks, and a variant ILD-no-BC. The variant
ILD-no-BC is our method that does not use expert actions
for supervised learning to initialize the neural network. It
shows that our proposed method does not rely on BC. with-
out BC, ILD still achieves comparable performance in most
tasks. The only problem is that the ILD without BC is less
stable than the BC version on Acrobot. However, we be-
lieve that this does not affect the final conclusion. The abla-
tion results of the other four tasks agree with the conclusion
that the gradient truncation length cannot be too small or
too long and Chamfer-alpha performs better than L2 loss in
an overview.

A.3. Reinforcement Learning and Planning

We added another additional reinforcement learning
baseline, SHAC [36] that exploits differentiable dynamics
and planning baseline CEM-MPC [30]. We implemented
SHAC in JAX following the official implementation of Py-
Torch. Shown in Table 6, ILD achieved better results than
SHAC on 6 out of 8 tasks for the same number of envi-
ronmental interactions. We observed that SHAC is sensi-
tive to hyperparameters and that hyperparameters have to
be adjusted on a case-by-case basis. Given the time con-
straints, we used the same set of hyperparameters in all ex-
periments. However, SHAC is a pure reinforcement learn-
ing algorithm, which requires an ground truth reward func-
tion, whereas the imitation learning method ILD does not.
The baseline CEM-MPC accesses to the dynamics model
and ground truth state during the test time, while ILD only
uses observations. In the other tasks which only have image
observations as input, planning-based methods have diffi-
culties running. Therefore, we used the newly added results
as a reference only and not as comparable baselines.

A.4. Multiple Expert Demonstrations

To take advantage of more expert demonstration data,
we add additional experiments comparing the ILD trained
with 16 demonstrations to the ILD trained with the best
of the 16 trajectories. Our results show that the ILD with
only one trajectory actually outperforms the version with
multiple trajectories. This is because ILD can successfully
exploit expert information and therefore have high sample
efficiency. In addition, the expert arguments contain uncer-

Table 6. Brax MuJoCo RL and Planning Results

Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pendulum Acrobot

SHAC -325.93 25.50 208.86 -17.23 88.73 4.60 128.00 160.23
CEM-MPC -281.45 274.32 569.28 -139.19 276.08 10.60 128.00 154.71
ILD (ours) 594.88 243.93 736.87 -22.86 214.17 4.54 128.00 202.74

Expert 624.34 292.83 933.24 -22.49 289.14 4.29 128.00 200.80

Table 7. Brax MuJoCo ILD with Multiple Demonstration Results

Ant Hopper Humanoid Reacher Walker2d Swimmer Inverted pend Acrobot

ILD-16 641.36±6.09 283.96±1.17 838.83± 26.87 -20.91±0.68 382.73±31.95 5.07±0.02 128.00±0.00 202.73±0.05
ILD-top1 633.80±9.21 294.10±1.12 912.93±40.98 -29.36±0.07 419.83±14.15 5.11±0.01 128.00±0.00 202.73±0.05

Expert 661.85±6.59 309.19±13.48 962.37±17.55 -5.99±1.45 421.45±8.00 5.18±0.09 128.00±0.00 202.64±0.19

tainties. Suboptimal trajectories actually hinder the over-
all performance. In conclusion, given its high sample effi-
ciency, it is sufficient for ILD to use only one high-quality
expert demonstration.

A.5. ILD Implementation Details on Brax

In contrast to the IRL and AIL methods, our method ILD
has only one policy network consisting of three MLP layers
with Swish activation. The number of their hidden neurons
is 512, 256, and the corresponding action dimension of the
task, respectively. We clip the gradients with a maximum
gradient norm value of 0.3 to regularize the learning pro-
cess. To speed up the convergence, we use a batch size
of 360 on an NVIDIA A100 graphics card. The deviation
factor α and gradient truncation length are set to 1 and 10,
respectively. We train our policy network with an Adam op-
timizer with a learning rate of 0.001 for 5,000 updates. The
entire script is written by Flax [16] and JAX [5]. For a fair
comparison, all methods use the same amount of computa-
tional resource.

B. Cloth Manipulation
B.1. Cloth Simulation Details

Our cloth simulator is written in Jax and developed on
top of the Taichi [20] implementation. As shown in Fig. 4,
a piece of cloth is lying on the ground and the goal is to put
this cloth on a pole by controlling two black grippers. The
state of the cloth consists of 288 key points in the shape of
(288, 6), where the 6 dimensions are position and velocity.
The underlying physics engine is built on Hooke’s law, as
shown below:

fi =
X

j

−k(||xi − xj ||2 − lij)(xi − xj)

vt+1 = vt +∆t · f

m
xt+1 = xt +∆t · vt+1

where fi is the force at the ith point, j refers to the jth neigh-
bor, xi is the position of the ith point, and lij is the rest
distance. In general, the longer the stretching distance, the
higher the resistance force. By averaging the forces of all
neighbors, we can calculate the next state of the point. In
more detail, we set ∆t to 2e-3 and repeat the above update
equation 50 times for each robot action input. Thus, the
dynamics of the deformable object is accumulated through
time and the computational graph is long. To alleviate
the gradient explosion and gradient vanishing problems, we
normalize the gradients at each step of the backpropagation
process.

B.2. ILD Implementation Details

. We develop a cloth dynamics engine in JAX following
the implementation of Taichi [20]. The observation space
for this task has 1,736 dimensions and consists of 288 key
nodes on the cloth and 2 gripper states. The action space
consists of 6 dimensions that control the speed of the two
grasps. We assume that the two grippers have grabbed the
two corners of the cloth. To facilitate the evaluation, we
define a reward function that is 1 if the cloth is on the pole
at the last step and 0 otherwise. This reward function also
indicates the success rate of the training agent. The episode
length for this task is 80 and a single expert demonstration is
provided for all methods. We use the same implementation
as the Brax environment with 3 MLP layers. In the complex
task setting, we reduce the batch size from 360 to 50 due to
hardware memory limitations. The learning rate is set to
1e−4 and the rest is the same.

