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1. Implementation Details

TensoRF We use TensorRF [2] for the canonical space
of our pipeline with the following architecture changes, we
use 1) an appearance latent code into the MLP decoder to
account for appearance inconsistencies, and 2) RELU acti-
vation to threshold volume densities instead of Softplus to
allow sharper reconstruction. To combine the training of
TensoRF and deformation fields, we freeze the deformation
field and pre-train TensoRF for 14k iterations. During pre-
training, we grow the voxel grid from 1283 to the maximum
resolution 3003 (as in the original paper) for Subject1, Sub-
ject2, and Subject4 and 2003 for Subject3. We also prune
voxels with density smaller than 1e−4.

Deformation Field The architecture of the deformation
field is shown in Fig. 7. Each local deformation field con-
sists of a 3-layer MLP. Each layer consists of 40 neurons,
followed by a Leaky RELU. The input to the input layer of
each local field MLP is concatenation of a global expression
code and jaw pose masked with the Attention Mask, global
deformation latent code, and head and neck pose.

RigNeRF* We modify the original RigNerf [1] architec-
ture for the monocular setting and refer to it as RigNeRF*,
where the head pose from the tracker is transformed into a
camera extrinsic matrix, as if the head remains static and
the camera moves. Hence, for each frame, we query the
mesh deformed by expression only, instead of both pose, and
expression as in the original paper. We use the same network
architecture, and parameters for the deformation field, as
well as the same latent code dimensions. Finally, we train
each sequence for 1M iterations with ray batch-size of 1550
instead of the 100k epochs indicated in the original paper, as
it is a less complex task for the deformation field to learn the
deformation due to expressions only rather than both pose
and expression.

*Work was done while interning at Flawless AI.
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Figure 7. Architecture diagram of a single local field Dl.

Neck Head Jaw
Subject1 MEAN 6.09 0.314 -1.14 1.53 -6.44 -0.105 7.37 -0.0643 0.258

STD 6.75 4.21 6.02 10.1 15.10 6.63 1.89 2.26 3.24
Subject2 MEAN 1.27 -0.432 0.143 3.63 -1.69 -2.67 3.94 -1.02 -1.26

STD 7.64 7.42 6.77 9.66 32.3 7.60 2.44 3.16 6.51
Subject3 MEAN -2.75 0.236 -0.794 -1.35 4.02 2.55 6.60 0.781 -0.981

STD 2.41 1.20 3.21 3.84 4.76 3.66 1.93 0.936 2.34
Subject4 MEAN 3.11 -1.83 -2.87 -5.53 -2.07 2.65 4.54 -0.491 0.714

STD 4.70 5.99 2.98 6.33 16.8 4.19 2.56 2.18 4.68

Table 3. Pose distribution of 4 sequences in the order of yaw,
pitch, roll in degrees.

2. Dataset Analysis
Our video dataset consists of four subjects, as shown in

Fig. 4 (main paper). Subject1 (1st column) and Subject2 (4th
column) are subjects captured indoors with a 4K phone cam-
era. Subject3 (3rd column) is ex-president Obama addressing
a commencement speech, and is a segment of the HD video
downloaded from YouTube.1 Subject4 (2nd column) is a
female subject from IM Avatar benchmark dataset.2 The
first three datasets show unscripted natural expressions with
varying head poses, while the latter is split into a speech
video and another video with difficult expressions and poses,
as described in [5]. Tab. 3 shows the neck, head, and jaw
pose distribution of the four monocular sequences. Please
refer to the supplementary video for detailed visualization
of the poses as well as the range of expressions.

3. Additional Results
Test-time latent code optimization (deformation and ap-

pearance) helps adjust pose inaccuracies, which is a cur-

1Commencement speech of class 2020: https://youtu.be/
NGEvASSaPyg

2https : / / dataset . ait . ethz . ch / downloads /
IMavatar_data/data/yufeng.zip We use sequence MVI 1810
and MVI 1814 as training set and MVI 1812 as test set

1

https://youtu.be/NGEvASSaPyg
https://youtu.be/NGEvASSaPyg
https://dataset.ait.ethz.ch/downloads/IMavatar_data/data/yufeng.zip
https://dataset.ait.ethz.ch/downloads/IMavatar_data/data/yufeng.zip
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Figure 8. Qualitative comparisons of geometry with state-of-the-art on test data without tuning of latent code during test time. Top to
bottom: GT, IM Avatar(-), RigNeRF*, NerFace, and our approach. Here, the images are rendered with the latent codes of the first training
frame of each sequence. Note that our approach produces significantly richer geometric details, as observed in the normal maps. Besides,
the rendered images generated by our method faithfully reflect the pose, expression, and appearance of the ground truth images.

rent limitation of our approach. However, our model excels
at producing high-quality reconstruction, even without per-
frame latent code optimization. Fig. 8 compares the quality
of the normals obtained by our methods and the different
baselines on Subject1, Subject2, and Subject3. Note that no
image detail is lost when compared to Fig. 4 (main paper).
Besides, our method produces crisper results than baseline
approaches, as shown in the reconstructed normal maps.

Tab. 4 shows additional metrics for Ours† and
RigNeRF*†, both using no optimized latent code. Ours†
suffers from global pose misalignment (several pixels off)

without optimized latent code, impacting per-pixel image
metrics (PSNR and ℓ1). Local facial structures are still well
preserved as demonstrated by consistently lower scores (sec-
ond best) on LPIPS for which we still achieve state-of-the-art
performance.

4. Extended Analysis
Modeling Local Deformation Fields In our implemen-
tation, we model local deformation fields around a subset
of facial landmarks using DECA’s landmark definition [3].
Specifically, we experimented with 5 and 34 keypoint lo-



Ground Truth 34 keypoints 5 keypoints Global Field

Figure 9. Ablation on the number of keypoints used by our method. From left to right: ground truth, 34 keypoints, 5 keypoints, and
global field (i.e., no local decomposition). Note that the network size for each experiment is adjusted such that the total number of parameters
is roughly the same. Our method produces better visual results with 34 keypoints.

Subject1 Subject2
ℓ1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ ℓ1 ↓ SSIM ↑ LPIPS↓ PSNR ↑

Nerface 0.058 0.903 0.105 21.457 0.077 0.889 0.121 18.252
IM Avatar(-) 0.068 0.901 0.113 20.502 0.093 0.877 0.157 14.960
RigNeRF* 0.055 0.904 0.095 22.324 0.072 0.884 0.120 18.922
RigNeRF*† 0.0767 0.876 0.108 18.829 0.0814 0.881 0.131 17.598
Ours† 0.0773 0.895 0.0611 19.681 0.0873 0.876 0.0795 16.917
Ours 0.054 0.929 0.051 23.508 0.062 0.917 0.0576 20.4375

Subject3 Subject4
ℓ1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ ℓ1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑

Nerface 0.047 0.894 0.055 22.220 0.077 0.818 0.085 17.910
IM Avatar(-) 0.043 0.900 0.078 23.218 0.063 0.870 0.069 19.215
RigNeRF* 0.035 0.910 0.052 24.634 0.065 0.844 0.063 19.253
RigNeRF*† 0.03430 0.898 0.0526 23.109 0.118 0.727 0.129 14.677
Ours† 0.0335 0.925 0.0387 24.552 0.0745 0.789 0.0453 16.834
Ours 0.0206 0.971 0.0265 30.854 0.081 0.830 0.062 19.085

Table 4. Extended quantitative comparisons for Tab. 1. Ours†
and RigNeRF*† are run without optimized per-frame deformation
latent code. Bold black is best result; blue is second best.

cations, as shown in Fig. 10. The former representation is
similar to [4], though we change the tip of the nose with the
midpoint of the lower lip to better model jaw deformations.
In the latter, denser representation, we exploit the seman-
tics of the facial landmark definition and center local fields
around every other landmark.

Fig. 9 compares the effect of using different numbers of
keypoints. Note that our method reconstructs sharper de-

tails and more accurate facial features when the deformation
field is decomposed with 34 keypoints. Overall local de-
composition with both 34 and 5 keypoints results in better
reconstruction of details than that of the global field. The
latter tends to over smooth the reconstructed surface and
produce less accurate facial deformations than multiple local
deformation fields.
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(a) locations of 5 keypoints

(b) locations of 34 keypoints

Figure 10. keypoint locations for experiments
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