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In this supplementary material, we provide,
1. Resource usage for ITTA in Section 1.
2. Grad-CAM visualizations of different loss terms in Section 2.
3. Parameter analysis of ITTA in Section 3;
4. Using a different augmentation skill for ITTA in Section 4.
5. Using different updating steps or a strategy for ITTA during the test phase in Section 5.
6. Using different network structures for the learnable consistency loss and adaptive parameters in Section 6.
7. Comparisons with other related methods in Section 7.
8. Detailed experimental results in the DomainBed benchmark in Section 8.

1. Resource Usage Comparisons Between ITTA and the Baseline Model
Requiring extra resources for our ITTA is a common limitation for existing test-time-based arts. To further evaluate our

method, in this section, we compare FLOPS, model size, and inference time in Table 1. We compare only with ERM as most
existing methods utilize the same network during inferences. We note that compare to the baseline model, ITTA requires extra
Flops and processing time, this is because the adaptation process uses extra forward and backward steps during the test phase.
While the parameters between the two models are similar because the newly included adaptive blocks are much smaller in size
compared to the original model.

Table 1. Resource comparisons during testing. Here inc. and exc. columns in ITTA indicate to include and exclude the TTA phase.

Model Flops (G) Params (M) Time (s)
Baseline 1.82 11.18 0.004
ITTA (inc. | exc.) 6.12 | 1.83 14.95 | 14.94 0.021 | 0.005

2. Grad-CAM Visualizations of Different Self-Supervised Objectives
In Section 5 of the manuscript, we provide Grad-CAM [26] visualizations of our learnable consistency and the main

losses to illustrate their alignment. To further show the differences between several TTT tasks [29, 32], we present more
visual examples in this section. Results are shown in Figure 1. We observe that the entropy minimization [32] and rotation
estimation [29] objectives do not activate the same regions as the main loss. As shown in the first row, for the class label of
giraffe, both the main loss and our learned loss can correctly locate the two giraffes in the image, while the rotation estimation
task can only locate one target, the same observation can be found when the learned weights are disabled in our loss term.
Meanwhile, although the two objects can be found for the entropy minimization task, the corresponding hot region does not
align with that of the main loss. Similar phenomena can be observed in other samples. These visual examples demonstrate that
our learned objective can better align with the main task than the TTT tasks adopted in previous works [29, 32], explaining
why using the proposed learnable consistency loss can better improve TTT.
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Figure 1. Grad-CAM [26] visualizations from different loss terms. We use images with varying class labels (i.e. giraffe, elephant, house, and
horse from top to bottom) from the four target domains of PACS [13] as inputs (i.e. art, cartoon, photo, and sketch domains from top to
bottom). “Entropy” and “Rotation” here denote the entropy minimization and rotation estimation tasks in [32] and [29]. Ours w/o fw is the
learnable consistency loss in Eq. (1) in the manuscript (i.e. ∥fw(z − z′)∥) when fw is disabled. The proposed learnable consistency loss can
align well with the main classification task.

3. Parameter Analysis
In this section, we analyze the hyper-parameter used in ITTA. We use the weight parameter α to balance the contributions

from the main loss and weighted consistency loss (i.e. Lmain + αLwcont in Eq. (2) of our manuscript). To analyze the
sensitivity of ITTA regarding different values of α, we conduct ablation studies in the PACS benchmark [13]. Results are
listed in Table 2. We observe that the proposed ITTA can obtain favorable performances when α is in the range of 0.1 to 10,
and it performs the best on average when setting as 1. We thus fix the parameter as 1 in all experiments.

Table 2. Sensitivity analysis of ITTA regarding different values of α in the unseen domain from PACS [13]. The reported accuracies (%) and
standard deviations are computed from 60 trials in each target domain.

Values Target domain Avg.Art Cartoon Photo Sketch
α = 0.1 83.9 ± 0.7 76.2 ± 1.1 94.8 ± 0.2 78.8 ± 0.8 83.4 ± 0.2
α = 1 (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3
α = 10 83.9 ± 0.5 77.4 ± 0.6 94.2 ± 0.7 77.3 ± 0.8 83.2 ± 0.3
α = 100 81.5 ± 1.2 77.0 ± 0.6 92.6 ± 0.7 78.9 ± 2.1 82.5 ± 0.9

4. A Different Augmentation Skill for ITTA
In our manuscript, we use the existing augmentation strategy from [35] to obtain the augmented feature. In this section, we

replace this implementation with that from [16] to further verify if our ITTA can still thrive with another augmentation skill.



Table 3. Performances of our method with another augmentation strategy from [16] in the unseen domain from PACS [13]. The reported
accuracies (%) and standard deviations are computed from 60 trials in each target domain.

Model Target domain Avg.Art Cartoon Photo Sketch
ERM 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
Ours w/o fw & TTT 74.9 ± 0.4 74.1 ± 0.8 90.6 ± 0.3 79.7 ± 0.7 79.8 ± 0.4
Ours w/o fw 77.1 ± 1.0 73.6 ± 1.1 89.9 ± 0.4 78.4 ± 0.8 79.7 ± 0.2
Ours w/o TTT 77.5 ± 0.3 73.2 ± 0.6 92.4 ± 0.4 78.0 ± 1.0 80.3 ± 0.3
Ours (w/ fw & TTT) 79.2 ± 0.8 74.9 ± 1.1 92.2 ± 0.3 76.9 ± 0.7 80.8 ± 0.4

Different from [35] that mixes the statics of the feature to synthesize new information, [16] uses an affine transformation to
create new features, where the weight for the transformation is sampled from a normal distribution with the mean value of
one and standard value of zero, and the bias for the transformation is sampled from a normal distribution with the mean and
standard values both zero. Experiments are conducted on the PACS benchmark [13] with the leave-one-out strategy.

We compare ITTA with several different variants. (1) Ours w/o fw & TTT: this variant is the baseline model which uses the
naive consistency loss for training and does not include TTT during the test phase. (2) Ours w/o fw: we disable the fw in our
consistency loss, which uses the naive consistency loss for the test-time updating. (3) Ours w/o TTT: we do not update any
parameters during the test phase. This variant is used to verify whether TTT can improve the pretrained model when replacing
the augmentation strategy. We also compare these variants with the ERM method to show their effectivenesses.

Results are listed in Table 3. We observe that ERM performs favorably against the baseline model, indicating that this
augmentation strategy may not be beneficial for the training process. Meanwhile, we observe that when fw is disabled, the
performances seem to decrease in 3 out of 4 target domains, and the average accuracy is also inferior to the baseline (i.e. Ours
w/o fw & TTT). This result is in line with the finding in [19] that an inappropriate TTT task may deteriorate the performance.
In comparison, we note that the performances are both improved when fw is enabled (i.e. Ours w/o TTT and Ours), which once
again demonstrates that the proposed learnable consistency loss can improve the trained model. Moreover, we can also observe
that when combining fw and TTT, our model is superior to other variants and the ERM method. These results demonstrate
that the proposed two strategies can improve the current TTT framework despite a less effective augmentation strategy.

5. Different Updating Steps or Strategies for ITTA
In the manuscript, we use one TTT step for ITTA before during the testing step. In this section, we conduct experiments to

evaluate the performances of ITTA with different TTT steps. Experiments are conducted on the PACS benchmark [13] with
the leave-one-out strategy, and each target domain is examined with 60 sets of random seeds and hyper-parameter settings.
Results are listed in Table 4. We observe that the average accuracies of using more TTT steps are not improved greatly while
the computational times are proportional to the TTT steps. To this end, we use one TTT step for ITTA as a compromise
between accuracy and efficiency.

We use the online setting from TTT [29] for all arts, which assumes test samples arrive sequentially and updates the adaptive
blocks based on the states optimized from a previous sample. In this section, we also test ITTA in an episodic manner (i.e.
Epi) [5]. Results in Table 4 suggest that while the episodic updating strategy performs slightly worse than the current scheme,
and it still outperforms the baseline.

Table 4. Evaluations of ITTA in the unseen domain from PACS [13] with different TTT steps and updating strategies during the testing
phase. The reported accuracies (%) and standard deviations are computed from 60 trials in each target domain. The time consumption (TC)
is computed using one image with the size of 224 × 224. Epi. denotes updating ITTA in an episodic manner.

Steps Target domain Avg. TCArt Cartoon Photo Sketch
1 step (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3 2.4 ms
2 step 84.2 ± 0.9 77.5 ± 0.6 94.4 ± 0.4 79.1 ± 1.0 83.8 ± 0.1 4.2 ms
3 step 84.5 ± 1.2 77.6 ± 0.6 94.0 ± 0.6 79.3 ± 0.1 83.9 ± 0.3 6.1 ms
Epi. 83.6 ± 0.7 77.9 ± 0.5 95.2 ± 0.1 76.6 ± 0.5 83.3 ± 0.4



6. Different Network Structures for the Learnable Consistency Loss and Adaptive Parameters
In our implementation, we use 10 layers of learnable parameters for fw, and we use 5 layers of learnable parameters for fΘ

after each block. In this section, we evaluate our ITTA with different network structures for these two modules. Specifically,
we compare the original implementation with the variants that use 1, 5, and 15 layers for fw and 1, 10, and 15 layers for fΘ
to evaluate the performances of different structures. Similarly, we conduct experiments on the PACS benchmark [13] with
the leave-one-out strategy, and each target domain is examined with 60 sets of random seeds and hyper-parameter settings.
Evaluation results are listed in Table 5. We observe that their differences in the average accuracy are rather subtle on account
of the variances. To this end, we use the original implementation with 10 layers of learnable parameters for fw and 5 layers of
learnable parameters for fΘ, which performs relatively better than other variants.

Since the adaptive blocks fΘ are attached after each layer of the network, one may wonder how the varying locations of
the adaptive blocks affect the performance of ITTA. To answer this question, we further conduct experiments by adding the
adaptive blocks after different layers of the original network. Denoting as Loc = lan given the n layers in the original network,
we note that the model performs less effectively when the adaptive block is placed after the 1st layer of the network, and using
all four adaptive blocks (i.e. ours) is more effective than other alternatives.

7. Comparisons with Other Related Methods
Apart from the proposed ITTA, some other works also propose to include learnable parameters in their auxiliary losses.

Examples include MetaReg [2] and Feature-Critic [18] which both suggest using meta-learning to produce more general
models. The main difference between these arts and ITTA is that parameters in the auxiliary loss from [2, 18] are gradually
refined by episode training, and they are updated via a gradient alignment step in ITTA (see Sec. 3.1 in the manuscript),
which is much simpler. In this section, we compare ITTA with these two arts in the PACS dataset [13] using the same
settings aforementioned. Because MetaReg [2] does not release codes, we thus directly cite the data from their paper in the
comparison. Different from others, the results in [2] are averaged by 5 trials according to their paper, which is much less
than our experimental settings. Meanwhile, we also compare with TTT++ [19] which suggests storing the momentum of the
features from the source domain and enforcing the similarity between momentums of features from the source and target
domains. We use the same setting in Section 5.1 from the manuscript to evaluate TTT++. Results are listed in Table 6. We
observe that our method consistently outperforms that from [2, 18, 19] for both the cases with and without TTT, indicating
that the proposed learnable consistency loss and updating method is not only simpler but also more effective than the losses
in [2, 18].

Table 5. Performances of our method with different network structures for the consistency loss (i.e. fw) and adaptive parameters (i.e. fΘ) in
the unseen domain from PACS [13]. Here ‘Loc=lan’ locates the adaptive block after the n-th layer of the model (‘la4’ is the last layer). The
reported accuracies (%) and standard deviations are computed from 60 trials in each target domain.

Structures Target domain Avg.Art Cartoon Photo Sketch

Structures of fw

1 layer 83.5 ± 1.2 76.0 ± 1.0 95.3 ± 0.2 78.7 ± 1.5 83.4 ± 0.4
5 layers 83.7 ± 0.6 76.8 ± 0.9 94.6 ± 0.3 78.8 ± 0.3 83.5 ± 0.3

10 layers (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3
15 layers 84.1 ± 0.4 75.8 ± 0.2 94.3 ± 0.3 79.5 ± 0.4 83.4 ± 0.2

Structures of fΘ

1 layer 84.0 ± 0.6 77.4 ± 0.5 94.4 ± 0.5 78.3 ± 0.4 83.5 ± 0.3
5 layers (Ours) 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3

10 layers 84.8 ± 0.3 76.0 ± 0.6 94.1 ± 0.5 78.3 ± 0.1 83.3 ± 0.3
15 layers 83.9 ± 0.8 76.0 ± 0.5 93.8 ± 0.4 78.7 ± 1.4 83.1 ± 0.6

Locations of fΘ

Loc=la1 83.4 ± 0.7 76.8 ± 0.3 94.4 ± 0.3 77.8 ± 0.3 83.1 ± 0.3
Loc=la2 83.4 ± 0.6 77.7 ± 0.6 94.2 ± 0.5 78.0 ± 0.5 83.3 ± 0.3
Loc=la3 84.0 ± 0.4 77.5 ± 0.3 94.4 ± 0.1 77.8 ± 0.1 83.4 ± 0.2
Loc=la4 84.1 ± 0.7 77.8 ± 0.5 94.8 ± 0.2 76.9 ± 1.5 83.4 ± 0.4



Table 6. Compare with learnable losses in [2,18] in the unseen domain from PACS [13]. The reported accuracies (%) and standard deviations
are computed from 60 trials in each target domain except for [2] where the numbers are directly cited from their paper.

Model Target domain Avg.Art Cartoon Photo Sketch
MetaReg [2] 83.7 ± 0.2 77.2 ± 0.3 95.5 ± 0.2 70.3 ± 0.3 81.7
Feture-Critic [18] 78.4 ± 1.6 75.4 ± 1.2 92.6 ± 0.5 73.3 ± 1.4 80.0 ± 0.3
TTT++ [19] 84.3 ± 0.1 78.4 ± 0.5 93.8 ± 1.3 73.2 ± 3.2 82.4 ± 1.1
Ours w/o TTT 83.3 ± 0.5 76.0 ± 0.5 94.4 ± 0.5 76.7 ± 1.4 82.8 ± 0.3
Ours 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3

8. Detailed Results in the DomainBed Benchmark [8]
this section presents the average accuracy in each domain from different datasets. As shown in Table 7, 8, 9, 10, and

11, these results are detailed illustrations of the results in Table 2 in our manuscript. For all the experiments, we use the
“training-domain validate set” as the model selection method. A total of 22 methods are examined for 60 trials in each unseen
domain, and all methods are trained with the leave-one-out strategy using the ResNet18 [9] backbones.

Table 7. Average accuracies on the PACS [13] datasets using the default hyper-parameter settings in DomainBed [8].

art cartoon photo sketch Average
ERM [30] 78.0 ± 1.3 73.4 ± 0.8 94.1 ± 0.4 73.6 ± 2.2 79.8 ± 0.4
IRM [1] 76.9 ± 2.6 75.1 ± 0.7 94.3 ± 0.4 77.4 ± 0.4 80.9 ± 0.5
GroupGRO [25] 77.7 ± 2.6 76.4 ± 0.3 94.0 ± 0.3 74.8 ± 1.3 80.7 ± 0.4
Mixup [33] 79.3 ± 1.1 74.2 ± 0.3 94.9 ± 0.3 68.3 ± 2.7 79.2 ± 0.9
MLDG [14] 78.4 ± 0.7 75.1 ± 0.5 94.8 ± 0.4 76.7 ± 0.8 81.3 ± 0.2
CORAL [28] 81.5 ± 0.5 75.4 ± 0.7 95.2 ± 0.5 74.8 ± 0.4 81.7 ± 0.0
MMD [15] 81.3 ± 0.6 75.5 ± 1.0 94.0 ± 0.5 74.3 ± 1.5 81.3 ± 0.8
DANN [7] 79.0 ± 0.6 72.5 ± 0.7 94.4 ± 0.5 70.8 ± 3.0 79.2 ± 0.3
CDANN [17] 80.4 ± 0.8 73.7 ± 0.3 93.1 ± 0.6 74.2 ± 1.7 80.3 ± 0.5
MTL [4] 78.7 ± 0.6 73.4 ± 1.0 94.1 ± 0.6 74.4 ± 3.0 80.1 ± 0.8
SagNet [20] 82.9 ± 0.4 73.2 ± 1.1 94.6 ± 0.5 76.1 ± 1.8 81.7 ± 0.6
ARM [34] 79.4 ± 0.6 75.0 ± 0.7 94.3 ± 0.6 73.8 ± 0.6 80.6 ± 0.5
VREx [12] 74.4 ± 0.7 75.0 ± 0.4 93.3 ± 0.3 78.1 ± 0.9 80.2 ± 0.5
RSC [10] 78.5 ± 1.1 73.3 ± 0.9 93.6 ± 0.6 76.5 ± 1.4 80.5 ± 0.2
SelfReg [11] 82.5 ± 0.8 74.4 ± 1.5 95.4 ± 0.5 74.9 ± 1.3 81.8 ± 0.3
MixStyle [35] 82.6 ± 1.2 76.3 ± 0.4 94.2 ± 0.3 77.5 ± 1.3 82.6 ± 0.4
Fish [27] 80.9 ± 1.0 75.9 ± 0.4 95.0 ± 0.4 76.2 ± 1.0 82.0 ± 0.3
SD [22] 83.2 ± 0.6 74.6 ± 0.3 94.6 ± 0.1 75.1 ± 1.6 81.9 ± 0.3
CAD [24] 83.9 ± 0.8 74.2 ± 0.4 94.6 ± 0.4 75.0 ± 1.2 81.9 ± 0.3
CondCAD [24] 79.7 ± 1.0 74.2 ± 0.9 94.6 ± 0.4 74.8 ± 1.4 80.8 ± 0.5
Fishr [23] 81.2 ± 0.4 75.8 ± 0.8 94.3 ± 0.3 73.8 ± 0.6 81.3 ± 0.3
Ours 84.7 ± 0.4 78.0 ± 0.4 94.5 ± 0.4 78.2 ± 0.3 83.8 ± 0.3



Table 8. Average accuracies on the VLCS [6] datasets using the default hyper-parameter settings in DomainBed [8].

Caltech LabelMe Sun VOC Average
ERM [30] 97.7 ± 0.3 62.1 ± 0.9 70.3 ± 0.9 73.2 ± 0.7 75.8 ± 0.2
IRM [1] 96.1 ± 0.8 62.5 ± 0.3 69.9 ± 0.7 72.0 ± 1.4 75.1 ± 0.1
GroupGRO [25] 96.7 ± 0.6 61.7 ± 1.5 70.2 ± 1.8 72.9 ± 0.6 75.4 ± 1.0
Mixup [33] 95.6 ± 1.5 62.7 ± 0.4 71.3 ± 0.3 75.4 ± 0.2 76.2 ± 0.3
MLDG [14] 95.8 ± 0.5 63.3 ± 0.8 68.5 ± 0.5 73.1 ± 0.8 75.2 ± 0.3
CORAL [28] 96.5 ± 0.3 62.8 ± 0.1 69.1 ± 0.6 73.8 ± 1.0 75.5 ± 0.4
MMD [15] 96.0 ± 0.8 64.3 ± 0.6 68.5 ± 0.6 70.8 ± 0.1 74.9 ± 0.5
DANN [7] 97.2 ± 0.1 63.3 ± 0.6 70.2 ± 0.9 74.4 ± 0.2 76.3 ± 0.2
CDANN [17] 95.4 ± 1.2 62.6 ± 0.6 69.9 ± 1.3 76.2 ± 0.5 76.0 ± 0.5
MTL [4] 94.4 ± 2.3 65.0 ± 0.6 69.6 ± 0.6 71.7 ± 1.3 75.2 ± 0.3
SagNet [20] 94.9 ± 0.7 61.9 ± 0.7 69.6 ± 1.3 75.2 ± 0.6 75.4 ± 0.8
ARM [34] 96.9 ± 0.5 61.9 ± 0.4 71.6 ± 0.1 73.3 ± 0.4 75.9 ± 0.3
VREx [12] 96.2 ± 0.0 62.5 ± 1.3 69.3 ± 0.9 73.1 ± 1.2 75.3 ± 0.6
RSC [10] 96.2 ± 0.0 63.6 ± 1.3 69.8 ± 1.0 72.0 ± 0.4 75.4 ± 0.3
SelfReg [11] 95.8 ± 0.6 63.4 ± 1.1 71.1 ± 0.6 75.3 ± 0.6 76.4 ± 0.7
MixStyle [35] 97.3 ± 0.3 61.6 ± 0.1 70.4 ± 0.7 71.3 ± 1.9 75.2 ± 0.7
Fish [27] 97.4 ± 0.2 63.4 ± 0.1 71.5 ± 0.4 75.2 ± 0.7 76.9 ± 0.2
SD [22] 96.5 ± 0.4 62.2 ± 0.0 69.7 ± 0.9 73.6 ± 0.4 75.5 ± 0.4
CAD [24] 94.5 ± 0.9 63.5 ± 0.6 70.4 ± 1.2 72.4 ± 1.3 75.2 ± 0.6
CondCAD [24] 96.5 ± 0.8 62.6 ± 0.4 69.1 ± 0.2 76.0 ± 0.2 76.1 ± 0.3
Fishr [23] 97.2 ± 0.6 63.3 ± 0.7 70.4 ± 0.6 74.0 ± 0.8 76.2 ± 0.3
Ours 96.9 ± 1.2 63.7 ± 1.1 72.0 ± 0.3 74.9 ± 0.8 76.9 ± 0.6

Table 9. Average accuracies on the OfficeHome [31] datasets using the default hyper-parameter settings in DomainBed [8].

art clipart product real Average
ERM [30] 52.2 ± 0.2 48.7 ± 0.5 69.9 ± 0.5 71.7 ± 0.5 60.6 ± 0.2
IRM [1] 49.7 ± 0.2 46.8 ± 0.5 67.5 ± 0.4 68.1 ± 0.6 58.0 ± 0.1
GroupGRO [25] 52.6 ± 1.1 48.2 ± 0.9 69.9 ± 0.4 71.5 ± 0.8 60.6 ± 0.3
Mixup [33] 54.0 ± 0.7 49.3 ± 0.7 70.7 ± 0.7 72.6 ± 0.3 61.7 ± 0.5
MLDG [14] 53.1 ± 0.3 48.4 ± 0.3 70.5 ± 0.7 71.7 ± 0.4 60.9 ± 0.2
CORAL [28] 55.1 ± 0.7 49.7 ± 0.9 71.8 ± 0.2 73.1 ± 0.5 62.4 ± 0.4
MMD [15] 50.9 ± 1.0 48.7 ± 0.3 69.3 ± 0.7 70.7 ± 1.3 59.9 ± 0.4
DANN [7] 51.8 ± 0.5 47.1 ± 0.1 69.1 ± 0.7 70.2 ± 0.7 59.5 ± 0.5
CDANN [17] 51.4 ± 0.5 46.9 ± 0.6 68.4 ± 0.5 70.4 ± 0.4 59.3 ± 0.4
MTL [4] 51.6 ± 1.5 47.7 ± 0.5 69.1 ± 0.3 71.0 ± 0.6 59.9 ± 0.5
SagNet [20] 55.3 ± 0.4 49.6 ± 0.2 72.1 ± 0.4 73.2 ± 0.4 62.5 ± 0.3
ARM [34] 51.3 ± 0.9 48.5 ± 0.4 68.0 ± 0.3 70.6 ± 0.1 59.6 ± 0.3
VREx [12] 51.1 ± 0.3 47.4 ± 0.6 69.0 ± 0.4 70.5 ± 0.4 59.5 ± 0.1
RSC [10] 49.0 ± 0.1 46.2 ± 1.5 67.8 ± 0.7 70.6 ± 0.3 58.4 ± 0.6
SelfReg [11] 55.1 ± 0.8 49.2 ± 0.6 72.2 ± 0.3 73.0 ± 0.3 62.4 ± 0.1
MixStyle [35] 50.8 ± 0.6 51.4 ± 1.1 67.6 ± 1.3 68.8 ± 0.5 59.6 ± 0.8
Fish [27] 54.6 ± 1.0 49.6 ± 1.0 71.3 ± 0.6 72.4 ± 0.2 62.0 ± 0.6
SD [22] 55.0 ± 0.4 51.3 ± 0.5 72.5 ± 0.2 72.7 ± 0.3 62.9 ± 0.2
CAD [24] 52.1 ± 0.6 48.3 ± 0.5 69.7 ± 0.3 71.9 ± 0.4 60.5 ± 0.3
CondCAD [24] 53.3 ± 0.6 48.4 ± 0.2 69.8 ± 0.9 72.6 ± 0.1 61.0 ± 0.4
Fishr [23] 52.6 ± 0.9 48.6 ± 0.3 69.9 ± 0.6 72.4 ± 0.4 60.9 ± 0.3
Ours 54.4 ± 0.2 52.3 ± 0.8 69.5 ± 0.3 71.7 ± 0.2 62.0 ± 0.2



Table 10. Average accuracies on the TerraInc [3] datasets using the default hyper-parameter settings in DomainBed [8].

L100 L38 L43 L46 Average
ERM [30] 42.1 ± 2.5 30.1 ± 1.2 48.9 ± 0.6 34.0 ± 1.1 38.8 ± 1.0
IRM [1] 41.8 ± 1.8 29.0 ± 3.6 49.6 ± 2.1 33.1 ± 1.5 38.4 ± 0.9
GroupGRO [25] 45.3 ± 4.6 36.1 ± 4.4 51.0 ± 0.8 33.7 ± 0.9 41.5 ± 2.0
Mixup [33] 49.4 ± 2.0 35.9 ± 1.8 53.0 ± 0.7 30.0 ± 0.9 42.1 ± 0.7
MLDG [14] 39.6 ± 2.3 33.2 ± 2.7 52.4 ± 0.5 35.1 ± 1.5 40.1 ± 0.9
CORAL [28] 46.7 ± 3.2 36.9 ± 4.3 49.5 ± 1.9 32.5 ± 0.7 41.4 ± 1.8
MMD [15] 49.1 ± 1.2 36.4 ± 4.8 50.4 ± 2.1 32.3 ± 1.5 42.0 ± 1.0
DANN [7] 44.3 ± 3.6 28.0 ± 1.5 47.9 ± 1.0 31.3 ± 0.6 37.9 ± 0.9
CDANN [17] 36.9 ± 6.4 32.7 ± 6.2 51.1 ± 1.3 33.5 ± 0.5 38.6 ± 2.3
MTL [4] 45.2 ± 2.6 31.0 ± 1.6 50.6 ± 1.1 34.9 ± 0.4 40.4 ± 1.0
SagNet [20] 36.3 ± 4.7 40.3 ± 2.0 52.5 ± 0.6 33.3 ± 1.3 40.6 ± 1.5
ARM [34] 41.5 ± 4.5 27.7 ± 2.4 50.9 ± 1.0 29.6 ± 1.5 37.4 ± 1.9
VREx [12] 48.0 ± 1.7 41.1 ± 1.5 51.8 ± 1.5 32.0 ± 1.2 43.2 ± 0.3
RSC [10] 42.8 ± 2.4 32.2 ± 3.8 49.6 ± 0.9 32.9 ± 1.2 39.4 ± 1.3
SelfReg [11] 46.1 ± 1.5 34.5 ± 1.6 49.8 ± 0.3 34.7 ± 1.5 41.3 ± 0.3
MixStyle [35] 50.6 ± 1.9 28.0 ± 4.5 52.1 ± 0.7 33.0 ± 0.2 40.9 ± 1.1
Fish [27] 46.3 ± 3.0 29.0 ± 1.1 52.7 ± 1.2 32.8 ± 1.0 40.2 ± 0.6
SD [22] 45.5 ± 1.9 33.2 ± 3.1 52.9 ± 0.7 36.4 ± 0.8 42.0 ± 1.0
CAD [24] 43.1 ± 2.6 31.1 ± 1.9 53.1 ± 1.6 34.7 ± 1.3 40.5 ± 0.4
CondCAD [24] 44.4 ± 2.9 32.9 ± 2.5 50.5 ± 1.3 30.8 ± 0.5 39.7 ± 0.4
Fishr [23] 49.9 ± 3.3 36.6 ± 0.9 49.8 ± 0.2 34.2 ± 1.3 42.6 ± 1.0
Ours 51.7 ± 2.4 37.6 ± 0.6 49.9 ± 0.6 33.6 ± 0.6 43.2 ± 0.5

Table 11. Average accuracies on the DomainNet [21] datasets using the default hyper-parameter settings in DomainBed [8].

clip info paint quick real sketch Average
ERM [30] 50.4 ± 0.2 14.0 ± 0.2 40.3 ± 0.5 11.7 ± 0.2 52.0 ± 0.2 43.2 ± 0.3 35.3 ± 0.1
IRM [1] 43.2 ± 0.9 12.6 ± 0.3 35.0 ± 1.4 9.9 ± 0.4 43.4 ± 3.0 38.4 ± 0.4 30.4 ± 1.0
GroupGRO [25] 38.2 ± 0.5 13.0 ± 0.3 28.7 ± 0.3 8.2 ± 0.1 43.4 ± 0.5 33.7 ± 0.0 27.5 ± 0.1
Mixup [33] 48.9 ± 0.3 13.6 ± 0.3 39.5 ± 0.5 10.9 ± 0.4 49.9 ± 0.2 41.2 ± 0.2 34.0 ± 0.0
MLDG [14] 51.1 ± 0.3 14.1 ± 0.3 40.7 ± 0.3 11.7 ± 0.1 52.3 ± 0.3 42.7 ± 0.2 35.4 ± 0.0
CORAL [28] 51.2 ± 0.2 15.4 ± 0.2 42.0 ± 0.2 12.7 ± 0.1 52.0 ± 0.3 43.4 ± 0.0 36.1 ± 0.2
MMD [15] 16.6 ± 13.3 0.3 ± 0.0 12.8 ± 10.4 0.3 ± 0.0 17.1 ± 13.7 0.4 ± 0.0 7.9 ± 6.2
DANN [7] 45.0 ± 0.2 12.8 ± 0.2 36.0 ± 0.2 10.4 ± 0.3 46.7 ± 0.3 38.0 ± 0.3 31.5 ± 0.1
CDANN [17] 45.3 ± 0.2 12.6 ± 0.2 36.6 ± 0.2 10.3 ± 0.4 47.5 ± 0.1 38.9 ± 0.4 31.8 ± 0.2
MTL [4] 50.6 ± 0.2 14.0 ± 0.4 39.6 ± 0.3 12.0 ± 0.3 52.1 ± 0.1 41.5 ± 0.0 35.0 ± 0.0
SagNet [20] 51.0 ± 0.1 14.6 ± 0.1 40.2 ± 0.2 12.1 ± 0.2 51.5 ± 0.3 42.4 ± 0.1 35.3 ± 0.1
ARM [34] 43.0 ± 0.2 11.7 ± 0.2 34.6 ± 0.1 9.8 ± 0.4 43.2 ± 0.3 37.0 ± 0.3 29.9 ± 0.1
VREx [12] 39.2 ± 1.6 11.9 ± 0.4 31.2 ± 1.3 10.2 ± 0.4 41.5 ± 1.8 34.8 ± 0.8 28.1 ± 1.0
RSC [10] 39.5 ± 3.7 11.4 ± 0.8 30.5 ± 3.1 10.2 ± 0.8 41.0 ± 1.4 34.7 ± 2.6 27.9 ± 2.0
SelfReg [11] 47.9 ± 0.3 15.1 ± 0.3 41.2 ± 0.2 11.7 ± 0.3 48.8 ± 0.0 43.8 ± 0.3 34.7 ± 0.2
MixStyle [35] 49.1 ± 0.4 13.4 ± 0.0 39.3 ± 0.0 11.4 ± 0.4 47.7 ± 0.3 42.7 ± 0.1 33.9 ± 0.1
Fish [27] 51.5 ± 0.3 14.5 ± 0.2 40.4 ± 0.3 11.7 ± 0.5 52.6 ± 0.2 42.1 ± 0.1 35.5 ± 0.0
SD [22] 51.3 ± 0.3 15.5 ± 0.1 41.5 ± 0.3 12.6 ± 0.2 52.9 ± 0.2 44.0 ± 0.4 36.3 ± 0.2
CAD [24] 45.4 ± 1.0 12.1 ± 0.5 34.9 ± 1.1 10.2 ± 0.6 45.1 ± 1.6 38.5 ± 0.6 31.0 ± 0.8
CondCAD [24] 46.1 ± 1.0 13.3 ± 0.4 36.1 ± 1.4 10.7 ± 0.2 46.8 ± 1.3 38.7 ± 0.7 31.9 ± 0.7
Fishr [23] 47.8 ± 0.7 14.6 ± 0.2 40.0 ± 0.3 11.9 ± 0.2 49.2 ± 0.7 41.7 ± 0.1 34.2 ± 0.3
Ours 50.7 ± 0.7 13.9 ± 0.4 39.4 ± 0.5 11.9 ± 0.2 50.2 ± 0.3 43.5 ± 0.1 34.9 ± 0.1
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