
Appendix

In this supplementary material, we first introduce im-
plementation details in Sec. A. It includes data processing,
training settings, and network architectures. After that, in
Sec. B, we introduce additional experimental results on the
nuScenes dataset. We also provide additional visualizations
on effective receptive fields (ERFs) in Sec. C and the il-
lustration manner. Note that the rank of LargeKernel3D
on nuScenes test is reported at the paper submission time.
Methods that released afterwards are not counted. We visu-
alize group manners of Tab. 4 in the paper in Fig. S - 1.

A. More Implementation Details

A.1. Data Processing

ScanNetv2 We convert point clouds into voxels as input
data for the ScanNetv2 dataset. The voxelization sizes are
all 0.02m for all X, Y, Z axes. In terms of data augmenta-
tions, we exactly follow our baseline method, Minkowsk-
iNet [4]. Specially, input data is randomly dropped out with
a ratio of 0.2. For spatial augmentations, we also conduct
random horizontal flipping. For intensity augmentations,
we conduct auto-contrast, color translation, and jittering.
nuScenes We convert point clouds into voxels as input data.

We clip point clouds into [-54m, 54m] for both X and Y
axes, and [-5m, 3m] for the Z axis, on nuScenes [2]. The
voxel size is set as (0.075m, 0.075m, 0.2m). Data augmen-
tations include random flipping, global scaling, global ro-
tation, GT sampling [12], and an additional translation on
the nuScenes [2] dataset. Random flipping is performed in
X and Y axes. Rotation angle is sampled in [-45o, 45o].
Global scaling is conducted in the [0.9, 1.1] ratio. Transla-
tion noise is conducted on all three axes from the ratio [0,
0.5]. GT sampling is also conducted on the nuScenes.

Waymo Point clouds is clipped into [-75.2m, 75.2m] X and
Y axis, and [-2m, 4m] for Z axis, on Waymo [10] for ranges.
The input voxel size is set as (0.1m, 0.1m, 0.15m). The
data augmentations include random flipping, global scal-
ing, global rotation, and ground-truth (GT) sampling [12]
for the Waymo dataset. Random flipping is applied along
X and Y axes. Global scaling is sampled from the [0.95,
1.05] ratio. Global rotation is performed around the Z axis.
Rotation angle is sampled from [-45o, 45o]. Ground-truth
sampling copies objects from other training data, and pastes
them onto the current scene. It enriches data variance dur-
ing training. These settings follow baseline methods [9,14].

A.2. Training Settings

ScanNetv2 For models trained on the ScanNetv2 dataset,
we train networks for 600 epochs with batch size 16. The
learning rate is initialized as 0.1 and decays with a poly
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Figure S - 1. The center group manners in Tab. 4 in the paper. We
study the center sizes for group splitting and center shifting.

scheduler. We adopt SGD optimizer. The momentum is set
as 0.9. Hyper-parameters directly follow our baseline [4].

nuScenes We train CenterPoint [14] on the nuScenes
datasets for 20 epochs with batch size 32. This network
is trained by Adam. The learning rate is set as 1e-3 and de-
cays in the cosine annealing strategy to 1e-4. The weight
decay is set as 0.01. The gradient norms are clipped by 35.

Waymo We train the network for 30 epochs and batch size
16 on Waymo. The learning rate is initialized as 0.003. Gra-
dient norms are clipped by 10. We adopt the Adam opti-
mizer, with weight decay 0.01 and momentum 0.9. These
settings follow the CenterPoint [14] baseline.

A.3. Network Architecture Settings

3D Semantic Segmentation We use MinkowskiNet-34 [4]
as the baseline, for the ScanNetv2 dataset in the paper. In
MinkowskiNet-34, we set the channel numbers as {32, 64,
128, 256, 256, 128, 96, 96}. The block numbers, {n1,
n2, n3, n4, n5, n6, n7, n8}, are {2, 3, 4, 6, 2, 2, 2,
2}. The meanings of these notations are shown in Fig. S -
2. LargeKernel3D directly follows MinkowskiNet-34 for
these settings. They substitute the plain sparse convolu-
tional blocks to the proposed SW-LK Conv with spatial size
73 and groups 33. The tiny version, LargeKernel3D-T, has
half channel numbers of the original in the last two stages.

3D Object Detection The backbone network of Center-
Point [14] has channels {c0, c1, c2, c3, c4}, equal to {16, 16,
32, 64, 128}. The block numbers in these stages, {n1, n2,
n3, n4}, are {2, 2, 2, 2}. Each block contains two convo-
lutional layers, with a residual connection, except the stem.
LargeKernel3D also substitutes the plain blocks for SW-LK
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Table S - 1. Comparison with other methods and the ground-truth sampling fading (GT-S Fading) trick on the nuScenes val split.

Method NDS mAP Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
CenterPoint [14] 66.4 59.0 85.6 57.2 71.2 37.3 16.2 85.1 58.4 41.0 69.2 68.2
TransFusion [1] 66.8 60.0 85.8 57.6 71.6 37.3 19.3 86.7 57.2 42.3 71.0 69.7
Focals Conv [3] 67.2 60.2 85.7 58.4 71.5 37.8 19.0 85.5 58.5 45.6 70.4 69.2
LargeKernel3D 67.5 60.3 85.2 58.3 71.6 37.9 19.8 85.4 60.8 44.3 70.7 68.6
+ GT-S Fading 69.1 63.9 85.1 60.1 72.6 41.4 24.3 85.6 70.8 59.2 72.3 67.7
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Figure S - 2. Architectures of LargeKernel3D for 3D semantic segmentation and object detection.
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Figure S - 3. Architectures of LargeKernel3D-F with image fusion for 3D object detection.

blocks for stages 1, 2, 3. Because the last stage has heavy
channel numbers and its receptive field is already sufficient.

We also present the multi-modal network with our
large kernel backbone, i.e., LargeKernel3D-F. As shown
in Fig. S - 3, we conduct a direct voxel-wise summa-
tion between LIDAR and RGB features. The RGB branch
only contains a conv-bn-relu-pooling stem and 3 residual
bottlenecks [5]. We intentionally make the RGB branch
lightweight to fully demonstrate the capacity of our large-
kernel LIDAR backbone. These settings follow [3].

B. Additional Experimental Results
We present further improvements on the nuScenes

dataset by additional techniques in Tab. 1. These techniques
are removing gt-sampling in the last 5 training epochs (GT-
S Fading). This trick has been used by some previous state-
of-the-art methods [3, 11] for performance boosting. As
shown in Tab. 1, LargeKernel3D achieves 63.9% mAP on
the val split. This technique is included for test submis-
sion. For the multi-modal LargeKernel3D-F, it has the po-
tential to achieve better performance if equipped with more
advanced and heavier fusion methods [6, 7, 13]. We would

like to try these extensions in future work.

C. Visualizations
We provide additional visual comparisons between the

plain 3D network and our LargeKernel3D in Fig. S - 4. It
shares the same setting as the Fig. 2 in the paper. In each
group, the left one is the original image, the middle one is
the ERFs of plain 3D CNNs, and the right one is the ERFs of
our LargeKernel3D. We follow the definition of ERFs [8].
We calculate the gradient of every input voxel data regard-
ing the feature of interest. It illustrates the intensity of fea-
ture changes as the input value changes. We normalize the
gradient norms to [0, 1] and project them onto the image
plane via calibration matrices.
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