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These supplementary materials consist of additional ex-
perimental results and analyses that demonstrate the effec-
tiveness of our proposed method:

1. We evaluate our method on a recently introduced Web-
page Saliency dataset [1] (Section 1).

2. We demonstrate the generalizability of our method
by experimenting with an additional model, i.e., Sim-
pleNet [9] (Section 2).

3. We provide a comprehensive analysis on the effects of
the inter-user agreement on capturing variability of at-
tention (Section 3).

4. We provide supplementary results on leveraging
single-user ensemble for general saliency prediction
(Section 4).

5. We perform an ablation study to investigate the effec-
tiveness of different components within our method
(Section 5).

6. We present results with additional evaluation metrics
to complement experiments in the main paper (Section
6).

7. We provide the detailed definition of training objec-
tives used by our method (Section 7).

1. Results on Webpage Saliency Dataset
Comparative results in the main paper demonstrate the

effectiveness of our method across diverse visual stimuli,
including naturalistic images (OSIE [12]) and web pages
(FiWI [11]). To further highlight its advantages, we carry
out experiments on a recently introduced Webpage Saliency
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Table 1. User-aware saliency results on Webpage Saliency [1].

K=1 K=3 K=5

NSS CC NSS CC NSS CC

EML-Net 1.550 0.430 1.542 0.604 1.540 0.678

Ours* 1.622 0.438 1.592 0.618 1.590 0.698

Ours 1.669 0.446 1.607 0.626 1.602 0.703

Table 2. General saliency results on Webpage Saliency [1].

NSS KLD CC AUC-Judd sAUC

EML-Net 1.538 0.284 0.800 0.838 0.723

Ours 1.590 0.251 0.827 0.842 0.749

dataset [1] with eye-tracking data collected from 41 users
on 450 web pages. According to the results in Table 1 and
Table 2, our method leads to improvements consistent with
those reported in the main paper, and is advantageous in
both user-aware and general saliency prediction.

2. Experimenting with SimpleNet

In addition to showing the generalizability of our method
across different visual stimuli, we are also interested in val-
idating its robustness to different architectural designs. To
complement our results in the main paper, which are ob-
tained by incorporating our method with EML-Net [5], we
further experiment with a different model. We choose Sim-
pleNet [9], which is a computationally efficient yet highly
accurate model. As shown in Table 3 and Table 4, our
method is able to outperform its counterparts without con-
sidering visual preferences (i.e., SimpleNet [9]) or the com-
position of attention (i.e., Ours*). The results agree with
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Table 3. User-aware saliency prediction results on FiWI dataset
with SimpleNet.

K=1 K=3 K=5

NSS CC NSS CC NSS CC

SimpleNet 1.515 0.312 1.499 0.454 1.518 0.519

Ours* 1.603 0.314 1.352 0.404 1.507 0.516

Ours 1.738 0.341 1.634 0.489 1.634 0.558

Table 4. General saliency prediction results on FiWI dataset with
SimpleNet.

NSS KLD SIM CC AUC

SimpleNet 1.501 1.317 0.556 0.598 0.821

Ours 1.597 0.682 0.577 0.639 0.838

those in the main paper, and serve as supporting evidence
for validating the generalizability of our method.

3. How Does Inter-user Agreement Affect
User-aware Saliency Modeling?

Visual attention is driven by both users’ visual prefer-
ences and the properties of visual stimuli. As a result, de-
spite the variability in users’ attention deployments, there
exists a considerable agreement between the regions of in-
terest by most users. As shown in Table 5, attention maps
aggregated from K randomly selected users tend to have
a relatively high correlation with those for all users. The
inter-user agreement creates difficulties for models to un-
derstand the diversity of visual behaviors, and results in a
shortcut where predicting an attention map averaged across
all users is able to provide reasonable performance on user-
aware saliency prediction. Our results in Table 6 show
that, for our model without the proposed learning method
(Ours*), leveraging an all-one user mask as input (+All-
one) outperforms its counterpart with the correct presence
of users (i.e., only considering attention of the selected
users) on CC scores. The observation implies that the model
lacks the capability to encode the users’ visual preferences
with their corresponding personalized filters. We overcome
the issue with the progressive learning method that enables
the model to bridge users’ preferences with saliency driven
by visual stimuli (Ours). Comparative results show that it
plays an important role in addressing the shortcut (using the
correct instead of all-one user mask has considerably bet-
ter results), which also leads to enhanced performance on
user-aware saliency modeling (see our main paper).

Table 5. Correlation between attention of K and all users on FiWI
dataset

Number of users NSS KLD SIM CC AUC

K=1 1.548 8.716 0.368 0.522 0.732

K=3 2.168 3.547 0.578 0.731 0.830

K=5 2.471 1.868 0.683 0.834 0.873

Table 6. Comparative results between models using adaptive and
all-one user masks on FiWI dataset. Note that the experiments are
run with a different (random) selection of users from those in the
main paper, which causes certain inconsistency.

K=1 K=3 K=5

NSS CC NSS CC NSS CC

Ours*+All-one 1.812 0.372 1.757 0.531 1.773 0.610

Ours* 1.860 0.362 1.783 0.530 1.784 0.609

Ours+All-one 1.823 0.374 1.776 0.537 1.790 0.616

Ours 1.987 0.388 1.821 0.541 1.815 0.620

Table 7. Comparative results on general saliency prediction for
FiWI and OSIE datasets. For FiWI, we report the results for 5-
fold cross-validation.

NSS KLD SIM CC AUC

FiWI
EML-Net [5] 1.686 0.589 0.591 0.674 0.848

Single-user 1.719 0.578 0.595 0.687 0.850

Ours 1.777 0.547 0.616 0.709 0.854

OSIE
EML-Net [5] 1.737 0.537 0.619 0.717 0.854

Single-user 1.629 0.606 0.588 0.687 0.842

Ours 1.840 0.506 0.652 0.761 0.860

4. Does Single-user Ensemble Help General
Saliency Prediction?

In the main paper, we show that our method, with a novel
model architecture and a principled learning paradigm, is
able to outperform an ensemble of single-user models (i.e.,
Single-user, training one model for each individual user)
in capturing the variability of users’ attention. In this sec-
tion, we further demonstrate its effectiveness by comparing
them on the general saliency prediction tasks. As reported
in Table 7, the additive ensemble either brings negligible
improvements (FiWI with complete users), or leads to a vis-
ible drop of accuracy (OSIE with sparse user annotations).
The results highlights the advantages of our approach in en-
hancing the predictive power on both user-aware and gen-
eral saliency prediction tasks, and overcoming the issues of
incomplete user annotations.



Table 8. Ablation results for user-aware saliency on FiWI dataset.

K=1 K=3 K=5

NSS CC NSS CC NSS CC

EML-Net [5] 1.481 0.307 1.506 0.454 1.498 0.519

Ours* w/o agg 1.912 0.374 1.816 0.539 1.785 0.613

Ours w/o agg 2.056 0.399 1.816 0.539 1.763 0.606

Ours w/o per-user 1.777 0.344 1.787 0.529 1.767 0.604

Ours 2.059 0.392 1.829 0.540 1.815 0.620

5. Ablation Study on Method Design
This section provides an ablation study on the contri-

butions of different components in the proposed method.
Specifically, we carry out experiments on three variants of
our method, including (1) Ours* w/o agg, which resembles
a multi-task learning model that shares the same architec-
ture as our model but does not use progressive learning and
is only optimized on per-user supervision (i.e., the 2nd term
in equation (5) of the main paper), (2) Ours w/o agg, which
is our model with progressive learning but only per-user op-
timization, and (3) Ours w/o per-user, which is our model
with progressive learning but not per-user optimization.

We draw two major observations from the comparative
results reported in Table 8, the experimental settings are the
same as those discussed in the main paper:

• Personalized filters play a key role in capturing
visual preferences. Compared to the user-agnostic
EML-Net [5], Ours* w/o agg shows significant in-
creases in all evaluation settings. The results verify
the importance of leveraging our proposed personal-
ized filters to encode discriminative preferences of dif-
ferent users.

• Bridging users’ preferences with the overall atten-
tion is important for user-aware saliency modeling.
Experimental results indicate that dropping supervi-
sion on either intermediate per-user predictions or the
final attention output leads to a visible drop of perfor-
mance. They demonstrate the integral design of our
method, and more importantly, highlight the need to
jointly consider the visual preferences of individual
users and the composition of their attention patterns.
With the consideration of both factors, our full method
achieves overall the best results.

6. Results with Additional Metrics
To complement our results reported in the main paper

(e.g., user-aware saliency evaluated with Normalized Scan-
path Saliency (NSS) [8] and Correlation Coefficient (CC)
[7]), in this section, we present results with two additional

Table 9. User-aware saliency results on FiWI dataset with addi-
tional metrics.

K=1 K=3 K=5

SIM AUC SIM AUC SIM AUC

EML-Net 0.261 0.820 0.413 0.821 0.479 0.821

Single-user 0.245 0.819 0.401 0.834 0.469 0.836

Ours* 0.299 0.863 0.452 0.856 0.521 0.856

Ours 0.306 0.867 0.458 0.856 0.528 0.857

Table 10. General saliency results on FiWI dataset with additional
metrics.

SIM AUC

EML-Net 0.591 0.845

EML-Net+SALICON 0.602 0.846

Ours 0.608 0.849

metrics (i.e., Similarity (SIM) [10] and AUC [3]). Compar-
ative results reported in Table 9 and Table 10 are consistent
with the observations discussed in the main paper, show-
ing the advantages of our method under various evaluation
settings.

7. Definition of Objective Function

Following [2, 4], we leverage a linear combination of
saliency evaluation metrics as our loss function (i.e., Lsal

in the main paper). The function takes into account three
popular metrics, including Normalized Scanpath Saliency
(NSS) [8], Correlation Coefficient (CC) [7], and KL-
Divergence (KLD) [6]:

Lsal = α ·NSS(S, F ix) + β · CC(S, Sal)

+ γ ·KLD(S, Sal)
(1)

where S is the predicted attention map, Fix and Sal are the
ground truth fixation and saliency map, respectively. α =
−1, β = −2, and γ = 10 are balancing factors defined
according to [2].
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